Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 641: 396-403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948096

RESUMO

Solid-state Li batteries employing Li-metal anodes and solid Li/Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolytes have emerged as promising next-generation energy storage devices due to their high energy density and safety. However, their performance is seriously limited by the irreversible reactivity of LATP with the Li-metal anode and the poor solid-solid interfacial contact between them, which result in relatively low ionic conductivity at the interface. The present work addresses these issues by presenting a method for modifying the Li/LATP interface in situ by applying 2-(trimethylsilyl) phenyl trifluoromethanesulfonate (2-(TMS)PTM) as a new type of electrolyte additive between the Li anode and the LATP electrolyte when assembling the battery, and then forming a uniform and thin interfacial layer via redox reactions occurring during the application of multiple charge-discharge cycles to the resulting battery. As a result of the significantly improved chemical compatibility between the Li anode and the LATP electrolyte, an as-assembled battery delivers a high reversible capacity of 165.7 mAh g-1 and an outstanding capacity retention of 86.2% after 300 charge-discharge cycles conducted at a rate of 0.2C and a temperature of 30 °C. Accordingly, this work provides a new strategy for developing advanced solid-state Li metal batteries by tailoring the interface between the Li anode and the solid electrolyte.

2.
Small ; 15(8): e1804855, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30632276

RESUMO

Natural chloroplasts containing big amounts of chlorophylls (magnesium porphyrin, Mg-Chl) are employed both as template and porphyrin source to synthesize biomorphic CoNC/CoOx composite as electrocatalyst for the oxygen reduction reaction (ORR). Cobalt-substituted chlorophyll derivative (Co-Chl) in chloroplasts is first obtained by successively rinsing in hydrochloric acid and cobalt acetate solutions. After calcining in nitrogen to 800 °C, Co-Chl is transferred to CoNC; while other parts of chloroplasts adsorbed with Co ions are transferred to CoOx retaining the microarchitecture of chloroplasts. The abundant active CoNC sites are protected by circumjacent biocarbon and CoOx to avoid leakage and agglomeration, and at the same time can overcome the poor conductivity weakness of CoOx by directly transporting electrons to the carbonaceous skeleton. This unique synergistic effect, together with efficient bioarchitecture, leads to good electrocatalytical performance for the ORR. The onset and half-wave potentials are 0.89 and 0.82 V versus reversible hydrogen electrode, respectively, with better durability and methanol tolerance than that of commercial Pt/C. Different from the traditional concept of biomorphic materials which simply utilize bioarchitectures, this work provides a new example of coupling bioderivative components with bioarchitectures into one integrated system to achieve good comprehensive performance for electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...