Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 130853, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570000

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a complex vascular disorder, characterized by pulmonary vessel remodeling and perivascular inflammation. Pulmonary arterial smooth muscle cells (PASMCs) pyroptosis is a novel pathological mechanism implicated of pulmonary vessel remodeling. However, the involvement of circRNAs in the process of pyroptosis and the underlying regulatory mechanisms remain inadequately understood. METHODS: Western blotting, PI staining and LDH release were used to explore the role of circLrch3 in PASMCs pyroptosis. Moreover, S9.6 dot blot and DRIP-PCR were used to assess the formation of R-loop between circLrch3 and its host gene Lrch3. Chip-qPCR were used to evaluate the mechanism of super enhancer-associated circLrh3, which is transcriptionally activated by the transcription factor Tbx2. RESULTS: CircLrch3 was markedly upregulated in hypoxic PASMCs. CircLrch3 knockdown inhibited hypoxia induced PASMCs pyroptosis in vivo and in vitro. Mechanistically, circLrch3 can form R-loop with host gene to upregulate the protein and mRNA expression of Lrch3. Furthermore, super enhancer interacted with the Tbx2 at the Lrch3 promoter locus, mediating the augmented transcription of circLrch3. CONCLUSION: Our findings clarify the role of a super enhancer-associated circLrch3 in the formation of R-loop with the host gene Lrch3 to modulate pyroptosis in PASMCs, ultimately promoting the development of PH.


Assuntos
Miócitos de Músculo Liso , Artéria Pulmonar , Piroptose , RNA Circular , Piroptose/genética , RNA Circular/genética , RNA Circular/metabolismo , Animais , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Miócitos de Músculo Liso/metabolismo , Ratos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Hipóxia Celular/genética , Músculo Liso Vascular/metabolismo , Masculino , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Regulação da Expressão Gênica , Elementos Facilitadores Genéticos/genética , Hipóxia/genética , Hipóxia/metabolismo , Super Intensificadores
2.
J Colloid Interface Sci ; 628(Pt A): 705-716, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35944301

RESUMO

Persistent organic pollutants in water are not only a potential threat to human health, but also cause damage to the ecological environment. Hence, the removal of large organic pollutants from wastewater is of great importance for environmental protection. Herein, hierarchical-pore UiO-66-NH2 xerogels (H-UiO-66-NH2 xerogels) with different mesopore size, H-UiO-66-NH2-11.6 nm and H-UiO-66-NH2-3.7 nm, were successfully synthesized by combining sol-gel-based method and acid modulator, featuring the characteristics of simple operation, rapid and scalable process, low cost, and the high space-time yield (STY). N2 adsorption-desorption isotherms reveal that the obtained H-UiO-66-NH2 xerogels possess high surface area, hierarchical-pore structures, large pore volume, and turntable mesopore size. Batch adsorption experiments demonstrate that H-UiO-66-NH2-11.6 nm has excellent adsorption performance for reactive red 195 (RR 195) dye removal. The maximum adsorption capacity of H-UiO-66-NH2-11.6 nm is 884.96 mg g-1, which is 4.7 times of the microporous UiO-66-NH2 (185.15 mg g-1). Moreover, the removal efficiency of H-UiO-66-NH2-11.6 nm for RR 195 can exceed 99 %. The adsorption mechanism reveals that the excellent RR 195 capture stems from the large mesoporous structure and abundant adsorption sites provided by the Zr cluster and -NH2 groups in H-UiO-66-NH2-11.6 nm. Besides, H-UiO-66-NH2-11.6 nm also exhibits a much larger adsorption capacity for some other organic pollutants, such as tetracycline, reactive black 5, and amoxicillin, demonstrating that the H-UiO-66-NH2 xerogel has great potential for organic pollutant removal.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Amoxicilina , Compostos Azo , Humanos , Estruturas Metalorgânicas , Naftalenossulfonatos , Poluentes Orgânicos Persistentes , Ácidos Ftálicos , Tetraciclinas , Águas Residuárias , Água , Poluentes Químicos da Água/química
3.
Entropy (Basel) ; 24(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741545

RESUMO

Due to the influence of signal-to-noise ratio in the early failure stage of rolling bearings in rotating machinery, it is difficult to effectively extract feature information. Variational Mode Decomposition (VMD) has been widely used to decompose vibration signals which can reflect more fault omens. In order to improve the efficiency and accuracy, a method to optimize VMD by using the Niche Genetic Algorithm (NGA) is proposed in this paper. In this method, the optimal Shannon entropy of modal components in a VMD algorithm is taken as the optimization objective, by using the NGA to constantly update and optimize the combination of influencing parameters composed of α and K so as to minimize the local minimum entropy. According to the obtained optimization results, the optimal input parameters of the VMD algorithm were set. The method mentioned is applied to the fault extraction of a simulated signal and a measured signal of a rolling bearing. The decomposition process of the rolling-bearing fault signal was transferred to the variational frame by the NGA-VMD algorithm, and several eigenmode function components were obtained. The energy feature extracted from the modal component containing the main fault information was used as the input vector of a particle swarm optimized support vector machine (PSO-SVM) and used to identify the fault type of the rolling bearing. The analysis results of the simulation signal and measured signal show that: the NGA-VMD algorithm can decompose the vibration signal of a rolling bearing accurately and has a better robust performance and correct recognition rate than the VMD algorithm. It can highlight the local characteristics of the original sample data and reduce the interference of the parameters selected artificially in the VMD algorithm on the processing results, improving the fault-diagnosis efficiency of rolling bearings.

4.
Materials (Basel) ; 12(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466278

RESUMO

In order to explore the relationship between the surface topography parameters and friction properties of a rough contact interface under fluid dynamic pressure lubrication conditions, friction experiments were carried out. The three-dimensional surface topography of specimens was measured and characterized with a profile microscopy measuring system and scanning electron microscope. The friction coefficient showed a trend of decreasing first and then increasing with the increase in some surface topography parameters at lower pressure, such as the surface height arithmetic mean Sa, surface height distribution kurtosis Sku, surface volume average volume Vvv, and surface center area average void volume Vvc, which are the ISO 25178 international standard parameters. The effects of surface topographic parameters on friction were analyzed and the wear mechanism of the worn surface was presented. The wear characteristics of the samples were mainly characterized as strain fatigue, grinding, and scraping. The results provide a theoretical basis for the functional characterization of surface topography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...