Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 9343-9354, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346235

RESUMO

No-carrier-added (NCA) 177Lu is one of the most interesting nuclides for endoradiotherapy. With the dramatically rapid development of radiopharmaceutical and nuclear medicine, there is a sharp increase in the radionuclide supply of NCA 177Lu, which has formed a great challenge to current radiochemical separation constituted on classical materials. Hence, it is of vital importance to design and prepare new functional materials able of recovering 177Lu from an irradiated target with excellent efficacy. In this work, we proposed to apply noncovalent interactions to regulate the porous properties of covalent organic frameworks (COFs) by tuning the branched chain, rendering related covalent hosts different encapsulation abilities toward a flexible guest, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507). More interestingly, we found that the noncovalent interaction has a great effect on the host-guest complexes, which can achieve efficient NCA 177Lu separation with high recovery (95.97%). A systematic mechanism combined with experimental and theoretical investigations has confirmed that the noncovalent interactions between COFs and P507 play a preeminent role in adjusting the macroscopic properties of the host-guest complexes. This work not only uncovers that noncovalent interactions can affect the basic properties of covalent organic bonded materials but also provides a strategy for the design and preparation of other new moieties with specific functionalities.

2.
J Environ Radioact ; 270: 107286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633243

RESUMO

The sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO3 solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (Kd) decreased with the increasing values of pHinitial, [U(VI)]initial, and ionic strength, but increased with the extended time and the rising temperature. The sorption was a pH-dependent, heterogeneous, spontaneous, and endothermic chemical process, which could be better described by Freundlich isothermal model and pseudo-second-order kinetic model. The presence of humic acid (HA) or fulvic acid (FA) significantly inhibited the U(VI) sorption, due to the enhanced electrostatic repulsion between the negatively charged HA/FA adsorbed on the clay surface and the negative U(VI) species, as well as the well dispersed HA/FA aggregates in solution wrapping the U(VI) species. The FTIR and XPS spectra indicated that the HCO3- groups on the surface of Tamusu clay after hydroxylation and the ‒OH groups in HA/FA were involved in the U(VI) sorption. The results reported here provide valuable insights into the further understanding of U(VI) migration in geological media.


Assuntos
Monitoramento de Radiação , Urânio , Argila , Adsorção , Concentração de Íons de Hidrogênio , Urânio/química , Substâncias Húmicas
3.
Sci Total Environ ; 822: 153507, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101504

RESUMO

The existing species of uranium determines the design of novel sorbents towards uranium extraction from the natural waters. Herein, three composites based on waste commercially available polyacrylonitrile fiber (WPANF), namely WPANF/TiO2·xH2O, WPANF/CTAB-bentonite, and WPANF/NZVI, were first prepared and employed for the removal of U(VI) from the carbonate coexisted aqueous solutions. Among them, the WPANF/TiO2·xH2O exhibited the optimum sorption capacity of ~40.6 mg·g-1 (pH 8.0, C0 = 50 mg·L-1, and [CO3]Total = 2 mmol·L-1), which is significantly greater than the WPANF/CTAB-bentonite (~12.6 mg·g-1) and WPANF/NZVI (~10.3 mg·g-1). All sorption capacities decreased with the increases of initial pH, [NaCl], and [CO3]Total, due to the species transformation from UO2(CO3)22- and (UO2)2CO3(OH)3- to UO2(CO3)34- that enhanced the electrostatic repulsion and the competitive sorption. The XPS analysis and DFT calculations indicated that in the composites, WPANF was a role in strengthening the mechanical properties of composites rather than the main sorption sites for uranyl carbonates. The sorption mechanisms were mainly involved in -OH group coordination, Br- anions exchanges, and redox reactions. Desorption, reusability and U(VI) sorption test in the simulated seawater demonstrated that WPANF/TiO2·xH2O could be an alternative candidate for acquiring uranium resource. This work has screened the potential composites for U(VI) extraction from the natural waters, especially based on the practical U(VI) speciation, and provides a novel research approach for the removal of U(VI) towards U(VI)-CO3 systems.


Assuntos
Urânio , Resinas Acrílicas , Adsorção , Bentonita/química , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...