Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(27): 19134-19146, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38882475

RESUMO

Post-extraction wound infections are a common complication of dental extractions. More specifically, infection in the alveolar socket after tooth extraction accelerates the resorption and destruction of the alveolar bone, and ultimately affects the final restoration results. Currently, the main clinical treatment approaches applied to the socket after tooth extraction include mechanical wound debridement, chemical rinses (e.g., chlorhexidine), filling of the extraction socket with absorbent gelatin sponges, and the systemic application of antibiotics. However, these traditional treatment modalities have some limitations and their therapeutic effects are unsatisfactory. In this study, a phototherapeutic temperature-sensitive hydrogel material was constructed for injection using a tea polyphenol (TP)-modified poly-N-isopropylacrylamide (PNIPAM) hydrogel skeleton loaded with the photosensitiser indocyanine green (ICG). The resulting PNIPAM-TP/ICG system exhibited an excellent injectability and temperature-sensitive properties. In addition, it stopped haemorrhaging and acted as a wound astringent. The hydrogel steadily released ICG into the oral environment to exert photothermal/photodynamic effects along with synergistic antibacterial and anti-inflammatory properties when combined with tea polyphenols. In vivo experiments demonstrated that the application of PNIPAM-TP/ICG to infected dental extraction wounds in rats rapidly stopped the bleeding and accelerated wound healing. Overall, this study describes a drug-loaded, temperature-sensitive hydrogel for the treatment of open wound infections, and shows promise as a reference for the treatment of tooth extraction wounds.

2.
ACS Biomater Sci Eng ; 10(4): 2523-2533, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38445444

RESUMO

Regenerating the pulp-dentin complex remains a decisive factor during apexification for immature permanent teeth. Peptide KN-17, which was modified based on the structure of cecropin B, could effectively interfere with bacterial growth and induce the migration of human bone marrow stromal cells (hBMSCs). This study aimed to investigate the effect of KN-17 on the tissue regeneration. To our surprise, KN-17 can significantly stimulate angiogenesis in vitro and in vivo, which may provide a guarantee for apical closure. Herein, a novel peptide/KN-17 coassembled hydrogel is developed via a heating-cooling process. Npx-FFEY/KN-17 supramolecular hydrogel can induce vessel development, stimulate odontogenic differentiation of human dental pulp stem cells (hDPSCs), and exert an antibacterial effect on Enterococcus faecalis (E. faecalis). Furthermore, coronal pulp excised rat molars are supplied with KN-17 or KN-17-loaded hydrogel and transplanted subcutaneously in BALB/c-nu mice. After 4 weeks, the hydrogel Npx-FFEY/KN-17 stimulates the formation of multiple odontoblast-like cells and dentin-like structures. Our findings demonstrate that the KN-17-loaded hydrogel can promote the regeneration of the pulp-dentin complex for continued root development.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Camundongos , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Peptídeos , Odontoblastos , Dentina , Polpa Dentária
3.
Photodiagnosis Photodyn Ther ; 31: 101907, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32619712

RESUMO

BACKGROUND: Oral tongue squamous cell carcinoma (OTSCC) is the most common malignancy of the oral cavity. Photodynamic therapy (PDT) has become a clinically promising approach for early stage OTSCC treatment. 5-Aminolaevulinic acid (5-ALA) is a precursor of protoporphyrin IX (PpIX) and has been applied for PDT of cancer. However, the accumulated PpIX in 5-ALA-treated cancer cells will be further transformed into heme through ferrous iron insertion under ferrochelatase catalysis. Theoretically, iron chelation can enhance the intracellular accumulation of PpIX and thus promote 5-ALA-based PDT. Here, an iron chelator deferasirox (DFX) was used to investigate synergistic suppression effects of 5-ALA-based PDT and iron chelation on OTSCC. METHODS: In OTSCC SCC-25 cells, the enhancing effect of DFX on 5-ALA-mediated accumulation of PpIX was firstly assessed. After laser irradiation (635 nm, 200 mW/cm2 and 2 min), the synergistic cytotoxicity and apoptosis-inducing effect of 5-ALA and DFX were evaluated in SCC-25 cells, and the apoptosis mechanism was further investigated by monitoring the change of mitochondrial membrane potential and observing the subcellular localization of cytochrome c (Cyt c). In SCC-25 tumor-bearing mice, the synergistic suppression effects of 5-ALA-based PDT and DFX on tumor growth and tumor angiogenesis were investigated after laser irradiation on the tumor (635 nm, 150 mW/cm2 and 10 min). RESULTS: In SCC-25 cells, DFX showed strong iron chelation effect and enhanced 5-ALA-mediated intracellular accumulation of PpIX by 2-3 folds. After laser irradiation (635 nm, 200 mW/cm2 and 2 min), 5-ALA combined with DFX exhibited significant synergistic effects on cytotoxicity and cell apoptosis. In the treated cells, the damage of mitochondrial membrane and the release of Cyt c from mitochondria to cytoplasm were observed distinctly, indicating the activation of mitochondria-related signal pathway. In SCC-25 tumor-bearing mice, tumor growth and tumor angiogenesis were both notably suppressed by combination treatment of 5-ALA with laser irradiation and DFX. Meanwhile, no obvious toxic injuries were visible in histological examination of major organs in the treated mice. CONCLUSIONS: 5-ALA-based PDT combined with iron chelation synergistically inhibited the growth of OTSCC. Hence it can be seen that this combination therapy may represent a promising strategy for clinical treatment of OTSCC and other cancers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Fotoquimioterapia , Neoplasias da Língua , Ácido Aminolevulínico/farmacologia , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quelantes de Ferro/farmacologia , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/radioterapia
5.
ACS Appl Mater Interfaces ; 10(35): 29260-29272, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30106279

RESUMO

In this study, a reactive oxygen species (ROS)-responsive nanoparticle system was designed for combining photodynamic therapy (PDT) and chemotherapy for oral tongue squamous cell carcinoma (OTSCC)-targeted treatment. A PEGlated prodrug (RPTD) of doxorubicin (DOX) via thioketal linkage and cRGD peptide modification was synthesized and then used to prepare nanoparticles for encapsulating photosensitizer hematoporphyrin (HP). Thus, the obtained HP-loaded RPTD (RPTD/HP) nanoparticles had a regular spherical shape and small size, approximately 180 nm. The RPTD/HP nanoparticles showed a remarkable PDT efficiency and successfully induced ROS generation upon laser irradiation both in vitro and in vivo. DOX exhibited significant ROS-responsive release property from RPTD/HP nanoparticles because of the rupture of the thioketal linker. In OTSCC cells, RPTD/HP nanoparticles were efficiently internalized and showed potent effects on cell growth inhibition and apoptosis induction after laser irradiation. In OTSCC tumor-bearing mice, RPTD/HP nanoparticles displayed excellent tumor-targeting ability and notably suppressed tumor growth through multiple mechanisms after local laser irradiation. Taken together, we supplied a novel therapeutic nanosystem for OTSCC treatment through combining PDT and chemotherapy.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Doxorrubicina , Nanopartículas/química , Fotoquimioterapia , Pró-Fármacos/química , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Língua/tratamento farmacológico , Animais , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Camundongos
6.
Biomaterials ; 155: 25-40, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29161627

RESUMO

Red blood cells (RBCs)-based vesicles have been widely used for drug delivery due to their unique advantages. Intact RBCs contain a large amount of oxyhemoglobin (oxyHb), which can assist with photodynamic therapy (PDT). Indocyanine green (ICG), a photosensitizer both for photothermal therapy (PTT) and PDT, shows potent anticancer efficacy when combined with chemotherapeutic drug doxorubicin (DOX). In this study, we prepared nanoscaled RBCs (RAs) containing oxyHb and gas-generating agent ammonium bicarbonate (ABC) for co-loading and controlled release of ICG and DOX, thus hoping to achieve synergistic effects of PTT/PDT and chemotherapy against breast cancer. Compared to free ICG, ICG and DOX co-loaded RAs (DIRAs) exhibited nearly identical PTT efficiency both in vitro and in vivo, but meanwhile their PDT efficiency was enhanced significantly. In mouse breast cancer cells, DIRAs significantly inhibited cell growth and induced cell apoptosis after laser irradiation. In breast tumor-bearing mice, intratumoral injection of DIRAs and followed by local laser irradiation almost completely ablated breast tumor and further suppressed tumor recurrence and metastasis. In conclusion, this biomimetic multifunctional nanosystem can facilitate breast cancer treatment by combining PTT/PDT and chemotherapy.


Assuntos
Neoplasias da Mama/terapia , Eritrócitos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Bicarbonatos/química , Linhagem Celular Tumoral , Doxorrubicina/química , Feminino , Humanos , Verde de Indocianina/química , Camundongos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química
7.
Int J Pharm ; 525(1): 21-31, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412450

RESUMO

HN-1, a 12-amino acid peptide, has been reported to possess strong capabilities for targeting and penetrating head and neck squamous cell carcinoma. Here, we designed a simple but effective nanoparticle system for the delivery of doxorubicin (DOX) targeting oral squamous cell carcinoma (OSCC) through the mediation of HN-1. PEGylated DOX (PD) was firstly synthesized by the conjugation of DOX with bis-amino-terminated poly(ethylene glycol) via succinyl linkage, and then PD nanoparticles were prepared by a modified nanoprecipitation method. After that, PD nanoparticles were surface-modified with HN-1 to form HNPD nanoparticles, which had a uniform spherical shape and a small size about 150nm. In human OSCC cells (CAL-27 and SCC-25), HNPD nanoparticles exhibited significantly higher cellular uptakes and cytotoxicities than PD nanoparticles. Furthermore, HNPD nanoparticles showed a certain degree of functional selectivity for CAL-27 and SCC-25 cells as compared to human hepatoma HepG2 cells. In SCC-25 tumor-bearing nude mice, HNPD nanoparticles showed remarkably enhanced tumor-targeting and penetrating efficiencies as compared to PD nanoparticles, and effectively inhibited the tumor growth. In conclusion, our study demonstrated for the first time that HN-1 could be used for mediating the OSCC-targeted delivery of nanoparticles.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias Bucais/tratamento farmacológico , Nanopartículas/química , Oligopeptídeos/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...