Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(43): 435502, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30091717

RESUMO

Atomically thin two-dimensional (2D) materials are ideal gas sensing materials for achieving an ultra-low detection limit, due to the high surface-to-volume ratio, low electronic noise and sensitively tunable Fermi level. However, the sensitivity of 2D materials to their surrounding environment may also severely degrade the long-term stability of sensing devices, since most of them use the same 2D material flake as both the sensing and conduction material. In this work, we report a gas sensor based on a 2D material field effect transistor (FET) which uses few-layer black phosphorus (BP), boron nitride (BN) and molybdenum disulfide (MoS2) as the top-gate, dielectric layer and conduction channel, respectively. In this device configuration, the top-gate of BP with a superior gas adsorption capability serves as the sensing material, while the conduction channel of MoS2 is isolated from ambient environment by the coverage of the BN dielectric layer. The separation of the sensing and conduction materials not only improves the long-term stability of the device, but also enables us to use different materials for gas adsorption and conduction purposes to achieve optimum sensing performances. In addition, the adsorption kinetics of the gas molecules on the sensing channel can be sensitively detected by the current/resistance variation of the conduction channel, since the adsorbed gas molecules can effectively tune the Fermi level of sensing and conduction materials (BP and MoS2, respectively) through band alignment. We experimentally demonstrated that the proposed 2D material FET not only achieved a detection limit of 3.3 ppb to NO2, but was also capable to differentiate oxidizing and reducing gases.

2.
Nanotechnology ; 29(28): 285501, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29668484

RESUMO

Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

3.
ACS Appl Mater Interfaces ; 9(35): 30107-30114, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28816041

RESUMO

Understanding and engineering the interface between metal and two-dimensional materials are of great importance to the research and development of nanoelectronics. In many cases the interface of metal and 2D materials can dominate the transport behavior of the devices. In this study, we focus on the metal contacts of MoTe2 (molybdenum ditelluride) FETs (field effect transistors) and demonstrate how to use post-annealing treatment to modulate their transport behaviors in a controlled manner. We have also carried out low temperature and transmission electron microscopy studies to understand the mechanisms behind the prominent effect of the annealing process. Changes in transport properties are presumably due to anti-site defects formed at the metal-MoTe2 interface under elevated temperature. The study provides more insights into MoTe2 field effect devices and suggests guidelines for future optimizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...