Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Neurorehabil Neural Repair ; : 15459683241257519, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812378

RESUMO

BACKGROUND: Intensive task-oriented training has shown promise in enhancing distal motor function among patients with chronic stroke. A personalized electromyography (EMG)-driven soft robotic hand was developed to assist task-oriented object-manipulation training effectively. Objective. To compare the effectiveness of task-oriented training using the EMG-driven soft robotic hand. METHODS: A single-blinded, randomized controlled trial was conducted with 34 chronic stroke survivors. The subjects were randomly assigned to the Hand Task (HT) group (n = 17) or the control (CON) group (n = 17). The HT group received 45 minutes of task-oriented training by manipulating small objects with the robotic hand for 20 sessions, while the CON group received 45 minutes of hand-functional exercises without objects using the same robot. Fugl-Meyer assessment (FMA-UE), Action Research Arm Test (ARAT), Modified Ashworth Score (MAS), Box and Block test (BBT), Maximum Grip Strength, and active range of motion (AROM) of fingers were assessed at baseline, after intervention, and 3 months follow-up. The muscle co-contraction index (CI) was analyzed to evaluate the session-by-session variation of upper limb EMG patterns. RESULTS: The HT group showed more significant improvement in FMA-UE (wrist/hand, shoulder/elbow) compared to the CON group (P < .05). At 3-month follow-up, the HT group demonstrated significant improvements in FMA-UE, ARAT, BBT, MAS (finger), and AROMs (P < .05). The HT group exhibited a more significant decrease in muscle co-contractions compared to the CON group (P < .05). CONCLUSIONS: EMG-driven task-oriented training with the personalized soft robotic hand was a practical approach to improving motor function and muscle coordination. CLINICAL TRIAL REGISTRY NAME: Soft Robotic Hand System for Stroke Rehabilitation. CLINICAL TRIAL REGISTRATION-URL: https://clinicaltrials.gov/. UNIQUE IDENTIFIER: NCT03286309.

2.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298057

RESUMO

Soft robots can create complicated structures and functions for rehabilitation. The posture perception of soft actuators is critical for performing closed-loop control for a precise location. It is essential to have a sensor with both soft and flexible characteristics that does not affect the movement of a soft actuator. This paper presents a novel end-to-end posture perception method that employs flexible sensors with kirigami-inspired structures and long short-term memory (LSTM) neural networks. The sensors were developed with conductive sponge materials. With one-step calibration from the sensor output, the posture of the soft actuator could be calculated by the LSTM network. The method was validated by attaching the developed sensors to a soft fiber-reinforced bending actuator. The results showed the accuracy of posture prediction of sponge sensors with three kirigami-inspired structures ranged from 0.91 to 0.97 in terms of R2. The sponge sensors only generated a resistive torque value of 0.96 mNm at the maximum bending position when attached to a soft actuator, which would minimize the effect on actuator movement. The kirigami-inspired flexible sponge sensor could in future enhance soft robotic development.


Assuntos
Robótica , Robótica/métodos , Desenho de Equipamento , Porosidade , Memória de Curto Prazo , Redes Neurais de Computação , Postura , Percepção
3.
J Phys Chem Lett ; 11(19): 7966-7971, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32885976

RESUMO

Guanine-rich repeat sequences are known to adopt diverse G-quadruplex (G4) topologies. Determining the unfolding rates of individual G4 species is challenging due to the coexistence of multiple G4 conformations in a solution. Here, using single-molecule magnetic tweezers, we systematically measured the unfolding force distributions of 4 oncogene promoter G4s, 12 model sequences with two 1-nucleotide (nt) thymine loops that predominantly adopt parallel-stranded G4 structures, and 6 sequences forming multiple G4 structures. All parallel-stranded G4s reveal an unfolding force peak at 40-60 pN, which is associated with extremely slow unfolding rates on the order of 10-5-10-7 s-1. In contrast, nonparallel G4s and partially folded intermediate states reveal an unfolding force peak <40 pN. These results suggest a strong correlation between the parallel-stranded G4s folding topology and the slow unfolding rates and provide important insights into the mechanism that govern the stability and the transition kinetics of G4s.


Assuntos
DNA/química , Sequência de Bases , Quadruplex G , Guanina/química , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Timina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...