Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8742, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627441

RESUMO

Building structures are subjected to strong earthquakes, which result in lateral collisions between them. Such collisions often cause severe structural damage and exacerbate the seismic hazard risk of building structures during earthquake events. This paper discusses the application of vibration control devices based on negative stiffness inerter damper in single-story adjacent building structures. The dynamic equations of the vibration control system containing different types of negative stiffness inerter damper under seismic excitation are established as a unified model. The H2 norm theory and Monte Carlo pattern search method are used to optimize the design parameters to improve the vibration control performance of the system, and the dynamic characteristics of the system are investigated. The results demonstrate that attaching negative stiffness inerter damper to adjacent building structures can effectively improve the overall seismic capacity reserve of the building and reduce the risk of collision of adjacent building structures; improve the robustness and stability of the system, and better reduce the displacement response of the building structure under seismic excitation. In addition, the potential of NSID-based vibration control devices to convert seismic energy into usable electricity has been investigated.

2.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956771

RESUMO

Clay is found in some countries all over the world. It usually has low compressive strength and cannot be used as a bearing material for subgrade soil. In this paper, the influence of basicity on a metakaolin-based polymer binder to improve clay was studied. The effects of the molar concentration of the alkali activator, different concentration of the metakaolin-based geopolymer and curing time on unconfined compressive strength were studied. The alkali activator-to-ash ratio was maintained at 0.7. The percentage of metakaolin added to the soil relative to metakaolin and soil mixture was 6%, 8%, 10% and 12%. The sodium hydroxide concentrations are 2M, 4M, 6M and 8M. Unconfined compressive strength (UCS) was tested on days 3, 7, 14 and 28, respectively. Compared with original clay, the results show that the unconfined compressive strength increases with the increase in metakaolin content and molar concentration of NaOH. The maximum compressive strength of the sample with NaOH concentration of 8M and percentage of 12% was 4109 kN on the 28th day, which is about 112% higher than that of the original clay. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results showed that the cementing compound covered the clay particles due to the reaction of the geopolymer with the clay, resulting in the formation of adhesive particles. The main purpose of this study is to verify the effectiveness and stability of metakaolin-based geopolymer binder polymerization under normal temperature and a strong alkali environment. The results can provide parameters for the application and promotion of metakaolin-based geopolymers in soil improvement engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...