Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 916: 170329, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280591

RESUMO

High temperature is an important abiotic stressor that limits the survival and growth of aquatic organisms. American shad (Alosa sapidissima), a migratory fish suitable for culturing at low temperatures, is known for its delicious taste and thus has high economic value. Studies concerning changes in A. sapidissima under high temperature are limited, especially at the gene expression and protein levels. High-temperature stress significantly reduced the survival rates and increased vacuolar degeneration and inflammatory infiltration in the gills and liver. High temperature increased the activities of SOD, CAT, and cortisol, with a trend of initial increase followed by decreases in MDA, ALP, and LDH, and irregular changes in T-AOC and Na-K-ATPase. Comprehensive analysis of the transcriptome, proteome, and metabolome of gills from fish treated with different culture temperatures (24, 27, and 30 °C) revealed that differentially expressed genes, proteins, and metabolites were highly enriched in pathways involved in protein digestion and absorption, protein processing in endoplasmic reticulum, metabolic pathways, and purine metabolism. Gene expression and protein profiles indicated that genes coding for antioxidants (i.e., cat and alpl) and members of the heat shock protein (i.e., HSP70, HSP90AA1, and HSP5) were significantly upregulated. Additionally, a conjoint analysis revealed that several key enzymes, including nucleoside diphosphate kinase 2, adenosine deaminase, and ectonucleoside triphosphate diphosphohydrolase 5/6 were altered, thereby affecting the metabolism of guanosine, guanine, and inosine. An interaction network further confirmed that levels of the essential amino acids DL-arginine and L-histidine were significantly reduced, and corticosterone levels were significantly increased, suggesting that A. sapidissima may be more dependent on amino acids for energy in vivo. Overall, this work suggests that living in a high-temperature environment leads to differential defense responses in fishes. The results provide novel perspectives for studying the molecular basis of adaptation to climate change in A. sapidissima and for genetic selection.


Assuntos
Peixes , Multiômica , Animais , Temperatura , Peixes/fisiologia , ATPase Trocadora de Sódio-Potássio
2.
Ecotoxicology ; 32(7): 895-907, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37726559

RESUMO

Heavy metal contamination severely affects the aquatic environment and organisms. Copper (Cu) and cadmium (Cd) are two of the most common heavy metal contaminants that impair the survival, development, and reproduction of aquatic organisms. With the growth of agriculture and industry, there is a possibility of heavy metal pollution in Coregonus ussuriensis Berg's water source. However, there are no published studies on the toxicity to C. ussuriensis. Acute toxicity experiments in C. ussuriensis revealed the 96-h median lethal concentrations of copper and cadmium to be 0.492 mg·L-1 (95% confidence interval: 0.452-0.529) and 1.548 mg·L-1 (95% confidence interval: 1.434-1.657), respectively, and safe concentrations of 4.92 µg·L-1 and 15.48 µg·L-1, respectively. C. ussuriensis was then treated for 96 h with Cu (20% of 96 h LC50), Cd (20% of 96 h LC50), and a combination of Cu and Cd (20% of Cu 96 h LC50 + 20% of Cd 96 h LC50). The histological damage caused by the three different exposure modes to the liver and gills of C. ussuriensis was verified using hematoxylin and eosin staining. All three exposure modes caused different degrees of vacuolization, nuclear consolidation, and necrosis in the liver tissue of C. ussuriensis and edema, hyperplasia, laminar fusion, and epithelial elevation in the gill tissue compared with the reference group. The severity of the damage increased with increasing exposure time. Anti-oxidant activity in the gill and liver tissues were measured using enzyme activity assay kits to reflect oxidative stress induced by copper and cadmium exposure alone and in combination. The enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH) were substantially higher than those in the reference groups. However, the activities of the enzymes decreased with increasing exposure time. Malondialdehyde (MDA) activity significantly increased during exposure in relation to that in the reference group. Analysis of immune gene expression in C. ussuriensis gill and liver tissues was executed using real-time inverse transcript polymerase chain response (RT-PCR). The expression levels of the pro-inflammatory cytokines interleukin one beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) were positively correlated with exposure time and were significantly upregulated with increasing exposure time. Metallothionein (MT) gene expression levels were significantly upregulated in the short term after exposure compared to the reference group but decreased with increasing exposure time. Our results indicate that exposure to aqueous copper and cadmium solutions, either alone or in combination, causes histopathological damage, oxidative stress, and immunotoxicity in C. ussuriensis gill and liver tissue. This study investigated the toxic effects of copper and cadmium on C. ussuriensis to facilitate the monitoring of heavy metals in water sources for healthy aquaculture.

3.
BMC Genomics ; 24(1): 70, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765276

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS: A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS: Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.


Assuntos
Carpas , MicroRNAs , Oryza , Animais , Carpas/genética , Carpas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pigmentação da Pele/genética , Oryza/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica
4.
Genomics ; 113(6): 3533-3543, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450291

RESUMO

Chromosomal ploidy manipulation is one of the means to create excellent germplasm. Triploid fish could provide an ideal sterile model for searching of a underlying mechanism of abnormality in meiosis. The complete understanding of the coding and noncoding RNAs regulating sterility caused by meiosis abnormality is still not well understood. By high-throughput sequencing, we compared the expression profiles of gonadal mRNA, long non-coding RNA (lncRNA), and microRNA (miRNA) at three different developmental stages between the diploid (XX) and triploid (XXX) female rainbow trout. These stages were gonads before differentiation (65 days post fertilisation, dpf), at the beginning of morphological differences (180 dpf) and showing clear difference between diploids and triploids (600 dpf), respectively. A majority of differentially expressed (DE) RNAs were identified, and 22 DE mRNAs related to oocyte meiosis and homologous recombination were characterized. The predicted miRNA-mRNA/lncRNA networks of 3 developmental stages were constructed based on the target pairs of DE lncRNA-miRNA and DE mRNA-miRNA. According to the networks, meiosis-related gene of ccne1 was targeted by dre-miR-15a-5p_R + 1, and 6 targeted DE lncRNAs were identified. Also, qRT-PCR was performed to validate the credibility of the network. Overall, this study explored the potential interplay between coding and noncoding RNAs during the gonadal development of polyploid fish. The mRNA, lncRNA and miRNA screened in this study may be helpful to identify the functional elements regulating fertility of rainbow trout, which may provide reference for character improvement in aquaculture.


Assuntos
MicroRNAs , Oncorhynchus mykiss , RNA Longo não Codificante , Animais , Feminino , Redes Reguladoras de Genes , Gônadas , MicroRNAs/genética , Oncorhynchus mykiss/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Triploidia
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(2): 254-259, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31016942

RESUMO

Zinc oxide quantum dots (ZnO QDs) were synthesized by gel-sol method and employed as the transdermal aloesin (Alo) carriers. ZnO QDs were surface-functionalized with amino using aminopropyltriethoxysilane (APTES). Alo was covalently bonded on the surface of ZnO QDs via N,N'-carbonyldiimidazole to obtain Alo NPs, which were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analyzer (TGA). TEM images showed that ZnO QDs were analogously sphere and monodisperse with a reasonably narrow size distribution, of which was around 4 nm. The size of Alo NPs increased to around 8 nm due to the surface modification. The intense bands at around 3 400 cm -1 and 1 200 cm -1 in the FTIR spectrum of Alo NPs from the vibration of -OH indicated the linkage of Alo on the surface of ZnO QDs. The results of TGA analysis showed that the mass ratio of ZnO QDs and Alo were 39.27% and 35.14%, respectively. The penetration of Alo NPs was much higher than raw Alo according to the passive penetration experiments with Franz-type diffusion cells instrument using full-thickness cavy skin, which manifested the improvement of the penetration for Alo delivered by ZnO QDs. The pH-controlled drug release behavior in vitro was investigated. At pH 7.4, only a small amount of Alo (1.45% ± 0.21%) had been released after 2 h. In contrast, as incubation at pH 5.0 of which pH was similar to endosomal environment, Alo was released very fast (87.63% ± 0.46% in 2 h) from Alo NPs, confirming that Alo NPs could response to the pH and realize the intracellular drug release. The inhibitory effect of Alo NPs on tyrosinase was in a dose dependent manner. When the concentration of Alo NPs was 12.5 µg/mL, the inhibition rate was up to 40.32% ± 1.57%. All the results show that the Alo NPs hold a great potential in transdermal tyrosinase inhibition.


Assuntos
Cromonas/administração & dosagem , Sistemas de Liberação de Medicamentos , Glucosídeos/administração & dosagem , Monofenol Mono-Oxigenase/metabolismo , Nanopartículas , Óxido de Zinco , Administração Cutânea , Animais , Cobaias , Pontos Quânticos
6.
Cancer Manag Res ; 11: 1177-1187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774445

RESUMO

BACKGROUND: Methyltransferase like 3 (METTL3) is an RNA methyltransferase implicated in mRNA biogenesis, decay, and translation control through N6-methyladenosine (m6A) modification. METHODS: To find new treatment strategies for lung cancer and to elucidate the mechanism underlying the phenomenon, we treated the human lung cancer cell lines A549 and H1299 to investigate the effect of METTL3 on lung cancer. RESULTS: We observed that knockdown of METTL3 inhibited the survival and proliferation of A549 and H1299 cells. The migration and proliferation of both cell lines were significantly decreased, and the apoptosis was induced in comparison with control cells. These results were further confirmed by the transfection of miRNA of METTL3 increased the Bax/Bcl-2 ratio in A549 and H1299 cells, which is a sign that mitochondrial apoptotic pathway was triggered. The PI3K/Akt pathway is implicated in cell growth and survival and we also observed that knockdown of METTL3 changed the expression and phosphorylation of proteins of PI3K signaling pathway members. Further, our results demonstrated that miR-600 inhibited the expression of METTL3 and reversed the positive effect of METTL3 on NSCLC progression, indicating an miR-600/METTL3 pathway in NSCLC. CONCLUSION: These data suggested that miR-600 inhibited lung cancer via down-regulating METTL3 expression, and knockdown of METTL3 might be used as a novel strategy for lung cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...