Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39030909

RESUMO

Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A Phytophthora sojae secreted pectin methylesterase (PsPME1) decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the tradeoff between host growth and defense responses. So, we used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) which specifically targets and inhibits pectin methylesterases secreted from pathogens but not from the plants. Transient expression of GmPMI1R enhanced plant resistance to oomycetes and fungal pathogens. In summary, our work highlights biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between the hosts and microbes and serves as an important proof-of-concept for how rapid advancements in AI-driven structure-based tools can accelerate the prediction of new strategies for plant protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...