Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(2): 975-984, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075871

RESUMO

In order to assess the ecological risks of heavy metals and explore the pattern of heavy metal migration between farmland and corresponding crops in a typical and closed manganese mining area in Hunan province, farmland soils and crops surrounding the mining area (pollution area) and away from the mining area (control area) were collected, and then the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb were analyzed. The sources and distribution of heavy metals in farmland soils were analyzed using Kriging spatial interpolation and principal component analysis, and the ecological risk was evaluated using the single factor index, comprehensive pollution index, and potential ecological risk index. The results showed that the surrounding farmland soils in the closed Manganese mining area presented serious pollution of Cd, Zn, As, and Mn, in which the average contents of the above heavy metals in the dry land soil in the polluted area were 6.22, 612.28, 37.72, and 1506.2 mg·kg-1, respectively. Compared with the soil risk screening value of agricultural land, the over-standard rates of Cd, Zn, and As were 88.41%, 94.20%, and 84.06%, respectively, and the average content of Mn in the farmland soil was three times that of the background value in the Hunan soil; however, the heavy metal pollution in the paddy field was relatively light. The principal component analysis showed that the sources of Cd, Mn, and Zn in the farmland soil were related to the manganese ore mining, whereas the source of As in the farmland soil might originate from agricultural activities. The pollution area was at a heavy pollution level, and the main pollution factors were Cd, Mn, and Zn. The Cd in the farmland soil could pose a strong potential ecological risk, but the rest of the heavy metals presented only a slight potential ecological risk. The content of Cr, Pb, and Cd in the crops in the study area exceeded the standard, and the exceeding standard rate was between 1.1% and 37.3%, where the average content of over-standard heavy metals in corn was higher than that in rice, and the average content of heavy metals in leafy vegetables was higher than that in root vegetables. The soil pollution degree of heavy metals could affect the accumulation ability of crops, and different crops had different accumulation abilities. For instance, leafy vegetables and root vegetables easily accumulated Cd and Zn; however, rice and corn separately enriched Cd and Cr, as well as Zn and Cu. The contents of heavy metals in dryland soils had a positive correlation with the content of heavy metals in corresponding crops. The contents of Cd and As in the paddy field and rice presented a positive correlation, but the remaining six heavy metal contents in rice (i.e., Cr, Mn, Ni, Cu, Zn, and Pb) did not correlate with the content of the paddy fields.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Poluição Ambiental , Fazendas , Manganês , Metais Pesados/análise , Mineração , Medição de Risco , Solo , Poluentes do Solo/análise
2.
J Tissue Eng Regen Med ; 15(12): 1162-1171, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551201

RESUMO

Esophageal cancer related gene-4 (ECRG4) has been shown to be a candidate tumor suppressor in many tumors, but its role in glioma remains poorly understood. This study aimed to explore whether extracellular vesicles (EVs) derived from brain endothelial cells which overexpressed ECRG4 have anti-tumor effect on gliomas in vivo and in vitro, as well as the possible mechanism. A constructed lentivirus expressing the ECRG4 gene was transfected into the hCMEC/D3 cell line. The EVs were isolated from the cells and characterized by Western blot with exosome markers of CD9, CD63, CD81, Alix. RT-PCR and Western blot were performed to verify ECRG4 expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clone formation assays were applied to detect the proliferation of glioma cells incubated with EVs expressing the ECRG4 (ECRG4-exo). The level of inflammatory cytokines and angiogenesis related factors, including nuclear factor kappa-B (NF-κB), interleukin (IL)-1ß, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) levels were detected by ELISA. The T98G cell xenograft mouse model was established and treated with ECRG4-EV. The tumor volume and weight were recorded. p38-MAPK, p-p38-MAPK proteins were determined by Western blot in tumor tissues. As a result, EVs can be internalized into U87MG and T98G cells. ECRG4-EV inhibited U87MG and T98G cell proliferation. ECRG4-EV also inhibited the expression of factors involved in inflammation and angiogenesis. In addition, ECRG4-EVs suppressed tumor growth and decreased the production of inflammatory cytokines through inactivation of p38-MAPK signal pathway. In conclusion, ECRG4-EVsuppresses glioma proliferation through modulating the inflammation and angiogenesis.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glioma/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Encéfalo , Linhagem Celular Tumoral , Células Endoteliais/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Glioma/genética , Glioma/patologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas Supressoras de Tumor/genética
3.
Anal Bioanal Chem ; 411(14): 3021-3028, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888466

RESUMO

A novel fluoro-chromogenic rhodamine spirolactam probe (RP) has been prepared through the condensation of rhodamine hydrazine and 2-acetylpyridine, which displayed the detection of Cu2+ with high selectivity over a large number of other common metal ions. It shows a "turn-on" response to paramagnetic Cu2+ with an about 12-fold enhancement, and a color change from colorless to red that is observable by the naked eye. These changes are ascribed to the ring-opening of the spirolactam in RP, and subsequent host-guest coordination. The 2:1 binding stoichiometry of RP to Cu2+ was confirmed by Job's and B-H plots. The resulting fluorescence enhancement can be used to detect Cu2+ at concentrations from 2.0 to 20.0 µM with a limit of detection of 0.21 µM, which was lower than the maximum allowable Cu2+ level set by the WHO. Finally, RP has been utilized to monitor Cu2+ in living cells and natural water. Graphical abstract.


Assuntos
Cobre/análise , Corantes Fluorescentes/química , Macrófagos/citologia , Piridinas/química , Rodaminas/química , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia por Raios X , Limite de Detecção , Camundongos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Espectrometria de Fluorescência , Água/química
4.
Front Immunol ; 10: 3161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117213

RESUMO

Glioma stem cell (GSC)-derived extracellular vesicles (EVs) can mediate the communication between GSCs and microglia. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in GSCs, EVs, and supernatant was detected by real-time PCR. The direct targeting between MALAT1 and miR-129-5p, miR-129-5p, and HMGB1 were tested with luciferase reporter analysis. The expression and secretion of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were determined in lipopolysaccharide-stimulated microglia or miR-129-5p inhibitor transferred to microglia exposed to GSC EVs or EVs derived from siMALAT1 pre-transferred GSCs. MALAT1 was enriched in GSC EVs compared with GSCs, and up-regulated MALAT1 was also observed in microglia upon GSC EVs incubation. The relative expression and secretion of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia were up-regulated in the GSC supernatant group, which could be reversed by dimethyl amiloride (DMA) (EV secretion inhibitor) co-administration or si-MALAT1 pre-transfection of GSCs. Luciferase reporter assay testified the direct binding of MALAT1 and miR-129-5p, miR-129-5p, and HMGB1, and si-MALAT1 could up-regulate miR-129-5p expression and down-regulate HMGB1 expression in microglia cells. The concentration of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia exposed to EVs from siMALAT1 transfected GSCs could be up-regulated by miR-129-5p inhibition. EVs lncRNA MALAT1 released from GSCs could modulate the inflammatory response of microglia after lipopolysaccharide stimulation through regulating the miR-129-5p/HMGB1 axis.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , MicroRNAs/imunologia , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/imunologia , Evasão Tumoral/imunologia , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/metabolismo , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/metabolismo , Microglia/imunologia , Microglia/metabolismo , Células-Tronco Neoplásicas/imunologia , RNA Longo não Codificante/metabolismo , Transdução de Sinais/imunologia
5.
CNS Neurol Disord Drug Targets ; 18(1): 78-87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30394221

RESUMO

BACKGROUND AND OBJECTIVE: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment. METHODS: The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot. RESULTS: We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting. CONCLUSION: Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


Assuntos
Glioblastoma/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Receptores CXCR5/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Exossomos/metabolismo , Glioblastoma/fisiopatologia , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos , Cultura Primária de Células , Fator de Necrose Tumoral alfa/metabolismo
6.
J Cereb Blood Flow Metab ; 33(6): 834-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23443171

RESUMO

Cerebral edema is a major contributor to morbidity associated with traumatic brain injury (TBI). The methods involved in most rodent models of TBI, including head fixation, opening of the skull, and prolonged anesthesia, likely alter TBI development and reduce secondary injury. We report the development of a closed-skull model of murine TBI, which minimizes time of anesthesia, allows the monitoring of intracranial pressure (ICP), and can be modulated to produce mild and moderate grade TBI. In this model, we characterized changes in aquaporin-4 (AQP4) expression and localization after mild and moderate TBI. We found that global AQP4 expression after TBI was generally increased; however, analysis of AQP4 localization revealed that the most prominent effect of TBI on AQP4 was the loss of polarized localization at endfoot processes of reactive astrocytes. This AQP4 dysregulation peaked at 7 days after injury and was largely indistinguishable between mild and moderate grade TBI for the first 2 weeks after injury. Within the same model, blood-brain barrieranalysis of variance permeability, cerebral edema, and ICP largely normalized within 7 days after moderate TBI. These findings suggest that changes in AQP4 expression and localization may not contribute to cerebral edema formation, but rather may represent a compensatory mechanism to facilitate its resolution.


Assuntos
Aquaporina 4/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Encéfalo/fisiopatologia , Animais , Aquaporina 4/análise , Astrócitos/metabolismo , Astrócitos/patologia , Axônios/metabolismo , Axônios/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Cognição , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...