Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870290

RESUMO

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Assuntos
Proteases Dependentes de ATP , Artemisininas , Enzima de Clivagem da Cadeia Lateral do Colesterol , Proteínas Mitocondriais , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Ratos , Androgênios/metabolismo , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Modelos Animais de Doenças , Hiperandrogenismo/tratamento farmacológico , Hiperandrogenismo/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ovário/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Proteólise , Camundongos Endogâmicos C57BL , Adulto Jovem , Adulto , Ratos Sprague-Dawley , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo
2.
Mol Metab ; 81: 101891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307386

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) development and function are essential for maintaining energy balance. However, the key factors that specifically regulate brown adipogenesis require further identification. Here, we demonstrated that the nuclear receptor subfamily 2 group F member 6 (NR2F6) played a pivotal role in brown adipogenesis and energy homeostasis. METHODS: We examined the differentiation of immortalized brown adipocytes and primary brown adipocytes when NR2F6 were deleted, and explored the mechanism through which NR2F6 regulated adipogenesis using ChIP-qPCR in vitro. Male wild type (WT) and Pdgfra-Cre-mediated deletion of Nr2f6 in preadipocytes (NR2F6-PKO) mice were fed with high fat diet (HFD) for 12 weeks, and adiposity, glucose intolerance, insulin resistance and inflammation were assessed. RESULTS: NR2F6 exhibited abundant expression in BAT, while its expression was minimal in white adipose tissue (WAT). Within BAT, NR2F6 was highly expressed in preadipocytes, experienced a transient increase in the early stage of brown adipocyte differentiation, and significantly decreased in the mature adipocytes. Depletion of NR2F6 in preadipocytes inhibited brown adipogenesis, caused hypertrophy of brown adipocytes, and impaired thermogenic function of BAT, but without affecting WAT development. NR2F6 transcriptionally regulated PPARγ expression to promote adipogenic process in brown adipocytes. Loss of NR2F6 in preadipocytes led to increased susceptibility to diet-induced metabolic disorders. CONCLUSIONS: Our findings unveiled NR2F6 as a novel key regulator of brown adipogenesis, potentially opening up new avenues for maintaining metabolic homeostasis by targeting NR2F6.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Animais , Masculino , Camundongos , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Homeostase
3.
Proc Natl Acad Sci U S A ; 120(33): e2305717120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549287

RESUMO

Great progress has been made in identifying positive regulators that activate adipocyte thermogenesis, but negative regulatory signaling of thermogenesis remains poorly understood. Here, we found that cardiotrophin-like cytokine factor 1 (CLCF1) signaling led to loss of brown fat identity, which impaired thermogenic capacity. CLCF1 levels decreased during thermogenic stimulation but were considerably increased in obesity. Adipocyte-specific CLCF1 transgenic (CLCF1-ATG) mice showed impaired energy expenditure and severe cold intolerance. Elevated CLCF1 triggered whitening of brown adipose tissue by suppressing mitochondrial biogenesis. Mechanistically, CLCF1 bound and activated ciliary neurotrophic factor receptor (CNTFR) and augmented signal transducer and activator of transcription 3 (STAT3) signaling. STAT3 transcriptionally inhibited both peroxisome proliferator-activated receptor-γ coactivator (PGC) 1α and 1ß, which thereafter restrained mitochondrial biogenesis in adipocytes. Inhibition of CNTFR or STAT3 could diminish the inhibitory effects of CLCF1 on mitochondrial biogenesis and thermogenesis. As a result, CLCF1-TG mice were predisposed to develop metabolic dysfunction even without external metabolic stress. Our findings revealed a brake signal on nonshivering thermogenesis and suggested that targeting this pathway could be used to restore brown fat activity and systemic metabolic homeostasis in obesity.


Assuntos
Adipócitos Marrons , Biogênese de Organelas , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Homeostase , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...