Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(6): e2300186, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093188

RESUMO

Lithium-sulfur batteries (LSBs) have become very promising next-generation energy-storage technologies owing to their high energy densities and cost-effectiveness. However, the poor electrical conductivity of the active material, volume changes that occur during cycling, the "shuttle effect" involving lithium polysulfides (LiPSs), and lithium dendrite growth limit their commercializability. Herein, the preparation of a CC@VS2 -VO2 @Li2 S@C electrode prepared by the in situ growth of a VS2 -VO2 heterostructure on carbon cloth (CC), loaded with Li2 S, and finally coated with a carbon shell, is reported. The cell with the CC@VS2 -VO2 @Li2 S@C cathode exhibits superior cycling stability and rate performance owing to synergy between its various components. The cell delivers a high discharge specific capacity of 919.8 mA g-1 at 0.2 C, with a capacity of 588.9 mAh g-1 retained after 500 cycles with an average capacity attenuation of 0.072% per cycle. The cell exhibits discharge capacities of 937.6, 780.2, 641.9, 541, and 462.8 mAh g-1 at current densities of 0.2, 0.5, 1, 2, and 3 C, respectively. This study provides a new approach for catalyzing LiPS conversion and promoting LSB applications.

2.
Nat Commun ; 14(1): 2421, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105989

RESUMO

To date, most studies on the DNA polymerase, POLD1, have focused on the effect of POLD1 inactivation mutations in tumors. However, the implications of high POLD1 expression in tumorigenesis remains elusive. Here, we determine that POLD1 has a pro-carcinogenic role in bladder cancer (BLCA) and is associated to the malignancy and prognosis of BLCA. Our studies demonstrate that POLD1 promotes the proliferation and metastasis of BLCA via MYC. Mechanistically, POLD1 stabilizes MYC in a manner independent of its' DNA polymerase activity. Instead, POLD1 attenuates FBXW7-mediated ubiquitination degradation of MYC by directly binding to the MYC homology box 1 domain competitively with FBXW7. Moreover, we find that POLD1 forms a complex with MYC to promote the transcriptional activity of MYC. In turn, MYC increases expression of POLD1, forming a POLD1-MYC positive feedback loop to enhance the pro-carcinogenic effect of POLD1-MYC on BLCA. Overall, our study identifies POLD1 as a promotor of BCLA via a MYC driven mechanism and suggest its potential as biomarker for BLCA.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias da Bexiga Urinária , Humanos , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , Neoplasias da Bexiga Urinária/genética , Carcinogênese/metabolismo , Proliferação de Células/genética , DNA Polimerase III/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...