Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000795

RESUMO

High sensitivity and selectivity and short response and recovery times are important for practical conductive polymer gas sensors. However, poor stability, poor selectivity, and long response times significantly limit the applicability of single-phase conducting polymers, such as polypyrrole (PPy). In this study, PPy/MoS2 composite films were prepared via chemical polymerization and mechanical blending, and flexible thin-film resistive NO2 sensors consisting of copper heating, fluorene polyester insulating, and PPy/MoS2 sensing layers with a silver fork finger electrode were fabricated on a flexible polyimide substrate using a flexible electronic printer. The PPy/MoS2 composite films were characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and field-emission scanning electron microscopy. A home-built gas sensing test platform was built to determine the resistance changes in the composite thin-film sensor with temperature and gas concentration. The PPy/MoS2 sensor exhibited better sensitivity, selectivity, and stability than a pure PPy sensor. Its response to 50 ppm NO2 was 38% at 150 °C, i.e., 26% higher than that of the pure PPy sensor, and its selectivity and stability were also higher. The greater sensitivity was attributed to p-n heterojunction formation after MoS2 doping and more gas adsorption sites. Thus, PPy/MoS2 composite film sensors have good application prospects.

2.
Cell Biosci ; 14(1): 70, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835047

RESUMO

BACKGROUND: The adult intestinal epithelium is a complex, self-renewing tissue composed of specialized cell types with diverse functions. Intestinal stem cells (ISCs) located at the bottom of crypts, where they divide to either self-renew, or move to the transit amplifying zone to divide and differentiate into absorptive and secretory cells as they move along the crypt-villus axis. Enteroendocrine cells (EECs), one type of secretory cells, are the most abundant hormone-producing cells in mammals and involved in the control of energy homeostasis. However, regulation of EEC development and homeostasis is still unclear or controversial. We have previously shown that protein arginine methyltransferase (PRMT) 1, a histone methyltransferase and transcription co-activator, is important for adult intestinal epithelial homeostasis. RESULTS: To investigate how PRMT1 affects adult intestinal epithelial homeostasis, we performed RNA-Seq on small intestinal crypts of tamoxifen-induced intestinal epithelium-specific PRMT1 knockout and PRMT1fl/fl adult mice. We found that PRMT1fl/fl and PRMT1-deficient small intestinal crypts exhibited markedly different mRNA profiles. Surprisingly, GO terms and KEGG pathway analyses showed that the topmost significantly enriched pathways among the genes upregulated in PRMT1 knockout crypts were associated with EECs. In particular, genes encoding enteroendocrine-specific hormones and transcription factors were upregulated in PRMT1-deficient small intestine. Moreover, a marked increase in the number of EECs was found in the PRMT1 knockout small intestine. Concomitantly, Neurogenin 3-positive enteroendocrine progenitor cells was also increased in the small intestinal crypts of the knockout mice, accompanied by the upregulation of the expression levels of downstream targets of Neurogenin 3, including Neuod1, Pax4, Insm1, in PRMT1-deficient crypts. CONCLUSIONS: Our finding for the first time revealed that the epigenetic enzyme PRMT1 controls mouse enteroendocrine cell development, most likely via inhibition of Neurogenin 3-mediated commitment to EEC lineage. It further suggests a potential role of PRMT1 as a critical transcriptional cofactor in EECs specification and homeostasis to affect metabolism and metabolic diseases.

3.
Int J Biol Sci ; 20(6): 2187-2201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617535

RESUMO

The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout (ΔIEC) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5ΔIEC reduces mTORC1 signaling. Surprisingly, adult Slc7a5ΔIEC intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in Slc7a5ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.


Assuntos
Sistemas de Transporte de Aminoácidos , Transportador 1 de Aminoácidos Neutros Grandes , Animais , Camundongos , Diferenciação Celular/genética , Proliferação de Células/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
4.
Sensors (Basel) ; 24(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474912

RESUMO

Modern chemical production processes often emit complex mixtures of gases, including hazardous pollutants such as NO2. Although widely used, gas sensors based on metal oxide semiconductors such as WO3 respond to a wide range of interfering gases other than NO2. Consequently, developing WO3 gas sensors with high NO2 selectivity is challenging. In this study, a simple one-step hydrothermal method was used to prepare WO3 nanorods modified with black phosphorus (BP) flakes as sensitive materials for NO2 sensing, and BP-WO3-based micro-electromechanical system gas sensors were fabricated. The characterization of the as-prepared BP-WO3 composite through X-ray diffraction scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the successful formation of the sandwich-like nanostructures. The result of gas-sensing tests with 2-14 ppm NO2 indicated that the sensor response was 1.25-2.21 with response-recovery times of 36 and 36 s, respectively, at 190 °C. In contrast to pure WO3, which exhibited a response of 1.07-2.2 to 0.3-5 ppm H2S at 160 °C, BP-WO3 showed almost no response to H2S. Thus, compared with pure WO3, BP-WO3 exhibited significantly improved NO2 selectivity. Overall, the BP-WO3 composite with sandwich-like nanostructures is a promising material for developing highly selective NO2 sensors for practical applications.

5.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475164

RESUMO

In areas where livestock are bred, there is a demand for accurate, real-time, and stable monitoring of ammonia concentration in the breeding environment. However, existing electronic nose systems have slow response times and limited detection accuracy. In this study, we introduce a novel solution: the bionic chamber construction of the electronic nose is optimized, and the sensor response data in the chamber are analyzed using an intelligent algorithm. We analyze the structure of the biomimetic chamber and the surface airflow of the sensor array to determine the sensing units of the system. The system employs an electronic nose to detect ammonia and ethanol gases in a circulating airflow within a closed box. The captured signals are processed, followed by the application of classification and regression models for data prediction. Our results suggest that the system, leveraging the biomimetic chamber, offers rapid gas detection response times. A high classification prediction accuracy, with a determination coefficient R2 value of 0.99 for single-output regression and over 0.98 for multi-output regression predictions, is achieved by incorporating a backpropagation (BP) neural network algorithm. These outcomes demonstrate the effectiveness of the electronic nose, based on an optimized bionic chamber combined with a BP neural network algorithm, in accurately detecting ammonia emitted during livestock excreta fermentation, satisfying the ammonia detection requirements of breeding farms.


Assuntos
Amônia , Gado , Animais , Biônica , Nariz Eletrônico , Fermentação , Gases
6.
Mol Cell Endocrinol ; 586: 112193, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401883

RESUMO

Intestinal development takes places in two phases, the initial formation of neonatal (mammals)/larval (anurans) intestine and its subsequent maturation into the adult form. This maturation occurs during postembryonic development when plasma thyroid hormone (T3) level peaks. In anurans such as the highly related Xenopus laevis and Xenopus tropicalis, the larval/tadpole intestine is drastically remodeled from a simple tubular structure to a complex, multi-folded adult organ during T3-dependent metamorphosis. This involved complete degeneration of larval epithelium via programmed cell death and de novo formation of adult epithelium, with concurrent maturation of the muscles and connective tissue. Here, we will summarize our current understanding of the underlying molecular mechanisms, with a focus on more recent genetic and genome-wide studies.


Assuntos
Células-Tronco Adultas , Tri-Iodotironina , Animais , Xenopus laevis , Xenopus/genética , Xenopus/metabolismo , Tri-Iodotironina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Intestinos , Hormônios Tireóideos/metabolismo , Metamorfose Biológica/genética , Organogênese/genética , Mamíferos/metabolismo
7.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334640

RESUMO

Targeted genome editing is a powerful tool in reverse genetic studies of gene function in many aspects of biological and pathological processes. The CRISPR/Cas system or engineered endonucleases such as ZFNs and TALENs are the most widely used genome editing tools that are introduced into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, triggering cellular DNA repair through either homologous recombination or non-homologous end joining (NHEJ). DNA repair through the NHEJ mechanism is usually error-prone, leading to point mutations or indels (insertions and deletions) within the targeted region. Some of the mutations in embryos are germline transmissible, thus providing an effective way to generate model organisms with targeted gene mutations. However, point mutations and short indels are difficult to be effectively genotyped, often requiring time-consuming and costly DNA sequencing to obtain reliable results. Here, we developed a parallel qPCR assay in combination with an iGenotype index to allow simple and reliable genotyping. The genotype-associated iGenotype indexes converged to three simple genotype-specific constant values (1, 0, -1) regardless of allele-specific primers used in the parallel qPCR assays or gene mutations at wide ranges of PCR template concentrations, thus resulting in clear genotype-specific cutoffs, established through statistical analysis, for genotype identification. While we established such a genotyping assay in the Xenopus tropicalis model, the approach should be applicable to genotyping of any organism or cells and can be potentially used for large-scale, automated genotyping.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Genótipo , Sistemas CRISPR-Cas/genética , Mutação/genética , Reparo do DNA
8.
Int J Biol Sci ; 20(2): 554-568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169732

RESUMO

The vertebrate adult intestinal epithelium has a high self-renewal rate driven by intestinal stem cells (ISCs) in the crypts, which play central roles in maintaining intestinal integrity and homeostasis. However, the underlying mechanisms remain elusive. Here we showed that protein arginine methyltransferase 1 (PRMT1), a major arginine methyltransferase that can also function as a transcription co-activator, was highly expressed in the proliferating cells of adult mouse intestinal crypts. Intestinal epithelium-specific knockout of PRMT1, which ablates PRMT1 gene starting during embryogenesis, caused distinct, region-specific effects on small intestine and colon: increasing and decreasing the goblet cell number in the small intestinal and colonic crypts, respectively, leading to elongation of the crypts in small intestine but not colon, while increasing crypt cell proliferation in both regions. We further generated a tamoxifen-inducible intestinal epithelium-specific PRMT1 knockout mouse model and found that tamoxifen-induced knockout of PRMT1 in the adult mice resulted in the same region-specific intestinal phenotypes. Thus, our studies have for the first time revealed that the epigenetic enzyme PRMT1 has distinct, region-specific roles in the maintenance of intestinal epithelial architecture and homeostasis, although PRMT1 may influence intestinal development.


Assuntos
Intestino Delgado , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Arginina , Proliferação de Células/genética , Células Epiteliais/metabolismo , Homeostase/genética , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos Knockout , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Tamoxifeno
10.
Vitam Horm ; 123: 483-502, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717995

RESUMO

Anuran metamorphosis is perhaps the most drastic developmental change regulated by thyroid hormone (T3) in vertebrate. It mimics the postembryonic development in mammals when many organs/tissues mature into adult forms and plasma T3 level peaks. T3 functions by regulating target gene transcription through T3 receptors (TRs), which can recruit corepressor or coactivator complexes to target genes in the absence or presence of T3, respectively. By using molecular and genetic approaches, we and others have investigated the role of corepressor or coactivator complexes in TR function during the development of two highly related anuran species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis. Here we will review some of these studies that demonstrate a critical role of coactivator complexes, particularly those containing steroid receptor coactivator (SRC) 3, in regulating metamorphic rate and ensuring the completion of metamorphosis.


Assuntos
Receptores de Esteroides , Hormônios Tireóideos , Humanos , Adulto , Animais , Xenopus laevis , Xenopus , Proteínas Correpressoras , Esteroides , Mamíferos
11.
Vitam Horm ; 123: 503-523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717996

RESUMO

Thyroid hormone (T3) plays critical roles in organ metabolism and development in vertebrates. Anuran metamorphosis is perhaps the most dramatic and best studied developmental process controlled by T3. Many changes in different organs/tissues during anuran metamorphosis resemble the maturation/remodeling of the corresponding organs/tissues during mammalian postembryonic development. The plasma T3 level peaks during both anuran metamorphosis and mammalian postembryonic development. T3 exerts its developmental function through transcriptional regulation via T3 receptors (TRs). Studies on the metamorphosis of two highly related anurans, pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, have led to a dual function model for TRs during development. This has been supported by strong molecular and genetic evidence. Here we review some of the evidence with a focus on more recent gene knockout studies in Xenopus tropicalis. These studies have not only supported the model but also revealed novel and TR subtype-specific roles during Xenopus development, particularly a critical role of TRα in controlling developmental timing and rate.


Assuntos
Mamíferos , Receptores dos Hormônios Tireóideos , Animais , Xenopus laevis , Xenopus , Receptores dos Hormônios Tireóideos/genética
12.
Front Endocrinol (Lausanne) ; 14: 1184013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265708

RESUMO

Amphibian metamorphosis resembles mammalian postembryonic development, a period around birth when many organs mature into their adult forms and when plasma thyroid hormone (T3) concentration peaks. T3 plays a causative role for amphibian metamorphosis. This and its independence from maternal influence make metamorphosis of amphibians, particularly anurans such as pseudo-tetraploid Xenopus laevis and its highly related diploid species Xenopus tropicalis, an excellent model to investigate how T3 regulates adult organ development. Studies on intestinal remodeling, a process that involves degeneration of larval epithelium via apoptosis and de novo formation of adult stem cells followed by their proliferation and differentiation to form the adult epithelium, have revealed important molecular insights on T3 regulation of cell fate during development. Here, we review some evidence suggesting that T3-induced activation of cell cycle program is important for T3-induced larval epithelial cell death and de novo formation of adult intestinal stem cells.


Assuntos
Células-Tronco Adultas , Tri-Iodotironina , Animais , Xenopus laevis/metabolismo , Xenopus/metabolismo , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Hormônios Tireóideos/metabolismo , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Ciclo Celular , Apoptose , Mamíferos/metabolismo
13.
iScience ; 26(4): 106301, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37153451

RESUMO

Thyroid hormone (T3) regulates vertebrate organ development, growth, and metabolism through the T3 receptor (TR). Due to maternal influence in mammals, it has been difficult to study if and how T3 regulates liver development. Liver remodeling during anuran metamorphosis resembles liver maturation in mammals and is controlled by T3. We generated Xenopus tropicalis animals with both TRα and TRß genes knocked out and found that TR double knockout liver had developmental defects such as reduced cell proliferation and failure to undergo hepatocyte hypertrophy or activate urea cycle gene expression. RNA-seq analysis showed that T3 activated canonical Wnt pathway in the liver. Particularly, Wnt11 was activated in both fibroblasts and hepatic cells, and in turn, likely promoted the proliferation and maturation of hepatocytes. Our study offers new insights into not only how T3 regulates liver development but also on potential means to improve liver regeneration.

14.
Cell Biosci ; 13(1): 83, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170319

RESUMO

Targeted genome editing is a powerful tool for studying gene function in almost every aspect of biological and pathological processes. The most widely used genome editing approach is to introduce engineered endonucleases or CRISPR/Cas system into cells or fertilized eggs to generate double-strand DNA breaks within the targeted region, leading to DNA repair through homologous recombination or non-homologous end joining (NHEJ). DNA repair through NHEJ mechanism is an error-prone process that often results in point mutations or stretches of indels (insertions and deletions) within the targeted region. Such mutations in embryos are germline transmissible, thus providing an easy means to generate organisms with gene mutations. However, point mutations and short indels present difficulty for genotyping, often requiring labor intensive sequencing to obtain reliable results. Here, we developed a single-tube competitive PCR assay with dual fluorescent primers that allowed simple and reliable genotyping. While we used Xenopus tropicalis as a model organism, the approach should be applicable to genotyping of any organisms.

15.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36862514

RESUMO

Hypothalamic neurons regulate body homeostasis by sensing and integrating changes in the levels of key hormones and primary nutrients (amino acids, glucose, and lipids). However, the molecular mechanisms that enable hypothalamic neurons to detect primary nutrients remain elusive. Here, we identified l-type amino acid transporter 1 (LAT1) in hypothalamic leptin receptor-expressing (LepR-expressing) neurons as being important for systemic energy and bone homeostasis. We observed LAT1-dependent amino acid uptake in the hypothalamus, which was compromised in a mouse model of obesity and diabetes. Mice lacking LAT1 (encoded by solute carrier transporter 7a5, Slc7a5) in LepR-expressing neurons exhibited obesity-related phenotypes and higher bone mass. Slc7a5 deficiency caused sympathetic dysfunction and leptin insensitivity in LepR-expressing neurons before obesity onset. Importantly, restoring Slc7a5 expression selectively in LepR-expressing ventromedial hypothalamus neurons rescued energy and bone homeostasis in mice deficient for Slc7a5 in LepR-expressing cells. Mechanistic target of rapamycin complex-1 (mTORC1) was found to be a crucial mediator of LAT1-dependent regulation of energy and bone homeostasis. These results suggest that the LAT1/mTORC1 axis in LepR-expressing neurons controls energy and bone homeostasis by fine-tuning sympathetic outflow, thus providing in vivo evidence of the implications of amino acid sensing by hypothalamic neurons in body homeostasis.


Assuntos
Hipotálamo , Transportador 1 de Aminoácidos Neutros Grandes , Camundongos , Animais , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Neurônios/metabolismo , Homeostase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
17.
Micromachines (Basel) ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838114

RESUMO

This paper reports a plate-type metamaterial designed by arranging unit cells with variable notched cross-sections in a periodical array for broadband high-frequency vibration attenuation in the range of 20 kHz~100 kHz. The dispersion relation and displacement field of the unit cell were calculated by simulation analysis, and the causes of the bandgap were analyzed. By studying the influence of critical structural parameters on the energy band structure, the corresponding structural parameters of a relatively wide bandgap were obtained. Finally, the plate-type metamaterial was designed by arranging unit cells with variable notched cross-sections in the periodical array, and the simulation results show that the vibration attenuation amplitude of the metamaterial can reach 99% in the frequency range of 20 kHz~100 kHz. After fabricating the designed plate-type metamaterial by 3D printing techniques, the characterization of plate-type metamaterial was investigated and the experiment results indicated that an 80% amplitude attenuation can be obtained for the suppression of vibration with the frequency of 20 kHz~100 kHz. The experimental results demonstrate that the periodic arrangement of multi-size cell structures can effectively widen the bandgap and have a vibration attenuation effect in the bandgap range, and the proposed plate-type metamaterial is promising for the vibration attenuation of highly precise equipment.

18.
Cell Biosci ; 13(1): 40, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823612

RESUMO

BACKGROUND: Animal regeneration is the natural process of replacing or restoring damaged or missing cells, tissues, organs, and even entire body to full function. Studies in mammals have revealed that many organs lose regenerative ability soon after birth when thyroid hormone (T3) level is high. This suggests that T3 play an important role in organ regeneration. Intriguingly, plasma T3 level peaks during amphibian metamorphosis, which is very similar to postembryonic development in humans. In addition, many organs, such as heart and tail, also lose their regenerative ability during metamorphosis. These make frogs as a good model to address how the organs gradually lose their regenerative ability during development and what roles T3 may play in this. Early tail regeneration studies have been done mainly in the tetraploid Xenopus laevis (X. laevis), which is difficult for gene knockout studies. Here we use the highly related but diploid anuran X. tropicalis to investigate the role of T3 signaling in tail regeneration with gene knockout approaches. RESULTS: We discovered that X. tropicalis tadpoles could regenerate their tail from premetamorphic stages up to the climax stage 59 then lose regenerative capacity as tail resorption begins, just like what observed for X. laevis. To test the hypothesis that T3-induced metamorphic program inhibits tail regeneration, we used TR double knockout (TRDKO) tadpoles lacking both TRα and TRß, the only two receptor genes in vertebrates, for tail regeneration studies. Our results showed that TRs were not necessary for tail regeneration at all stages. However, unlike wild type tadpoles, TRDKO tadpoles retained regenerative capacity at the climax stages 60/61, likely in part by increasing apoptosis at the early regenerative period and enhancing subsequent cell proliferation. In addition, TRDKO animals had higher levels of amputation-induced expression of many genes implicated to be important for tail regeneration, compared to the non-regenerative wild type tadpoles at stage 61. Finally, the high level of apoptosis in the remaining uncut portion of the tail as wild type tadpoles undergo tail resorption after stage 61 appeared to also contribute to the loss of regenerative ability. CONCLUSIONS: Our findings for the first time revealed an evolutionary conservation in the loss of tail regeneration capacity at metamorphic climax between X. laevis and X. tropicalis. Our studies with molecular and genetic approaches demonstrated that TR-mediated, T3-induced gene regulation program is responsible not only for tail resorption but also for the loss of tail regeneration capacity. Further studies by using the model should uncover how T3 modulates the regenerative outcome and offer potential new avenues for regenerative medicines toward human patients.

19.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36789439

RESUMO

The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.

20.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772572

RESUMO

Exhaled nitric oxide trace gas at the ppb level is a biomarker of human airway inflammation. To detect this, we developed a method for the collection of active pumping electronic nose bionic chamber gas. An optimization algorithm based on multivariate regression (MR) and genetic algorithm-back propagation (GA-BP) was proposed to improve the accuracy of trace-level gas detection. An electronic nose was used to detect NO gas at the ppb level by substituting breathing gas with a sample gas. The impact of the pump suction flow capacity variation on the response of the electronic nose system was determined using an ANOVA. Further, the optimization algorithm based on MR and GA-BP was studied for flow correction. The results of this study demonstrate an increase in the detection accuracy of the system by more than twofold, from 17.40%FS before correction to 6.86%FS after correction. The findings of this research lay the technical groundwork for the practical application of electronic nose systems in the daily monitoring of FeNO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...