Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174234, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917901

RESUMO

The high concentration of organic waste liquid obtained from the mini flush pipeline discharge technology based on source separation has the potential for fertilizer utilization. However, there are concerns about the risk of secondary pollution. This study proposes the idea of aeration treatment for regenerated liquid fertilizers to induce beneficial changes in their material composition and properties. Initially, this study compares the characteristic changes in nitrogen transformation of liquid fertilizer through aeration treatment. Subsequently, it examines the effects of different types of liquid fertilizers on soil properties, plant physiology, and soil microbial communities. Finally, we elucidate the flow and distribution of nitrogen in soil, plants, and nitrogen-containing gas emissions in agricultural ecosystems through material flow accounting. The study found that aeration treatment can reduce the ammonia nitrogen ratio while increasing the proportions of nitrite nitrogen and nitrate nitrogen. The regenerated liquid fertilizer through aeration treatment not only significantly increased the chlorophyll, protein, and polysaccharide content of vegetable leaves (P < 0.05) but also reduced nitrate accumulation. Moreover, it can reduce the risk of soil nitrate nitrogen leaching and increase the diversity of soil bacterial communities, enhancing the ecological functions of bacteria involved in carbon and nitrogen cycling. Material flow accounting indicated that aeration treatment for liquid fertilizer could reduce gaseous nitrogen loss by 50.0 %, improve the nitrogen utilization efficiency of vegetables by 95.5 %, and enhance soil nitrogen retention by 11.4 %. Overall, the results show that aeration treatment can improve the agricultural utilization of liquid fertilizer and reduce the risk of secondary pollution, providing preliminary decision-making support for optimizing resource treatment strategies for mini-flush toilet fecal waste to realize the agricultural cycle.

2.
Sci Rep ; 14(1): 12427, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816543

RESUMO

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Assuntos
Ácidos Cafeicos , Hemorragia Cerebral , Ferroptose , Lactatos , Fármacos Neuroprotetores , Animais , Ferroptose/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ratos , Lactatos/farmacologia , Lactatos/química , Lactatos/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Front Immunol ; 15: 1339380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571953

RESUMO

Controlled generation of cytotoxic reactive oxygen species (ROS) is essential in cancer therapy. Ultrasound (US)-triggered sonodynamic therapy (SDT) has shown considerable ability to trigger in situ ROS generation. Unfortunately, US therapy alone is insufficient to trigger an efficient anticancer response, owing to the induction of multiple immunosuppressive factors. It was identified that 7-ethyl-10-hydroxycamptothecin (SN38) could notably inhibit DNA topoisomerase I, induce DNA damage and boost robust anticancer immunity. However, limited by the low metabolic stability, poor bioavailability, and dose-limiting toxicity, the direct usage of SN38 is inadequate in immune motivation, which limits its clinical application. Hence, new strategies are needed to improve drug delivery efficiency to enhance DNA topoisomerase I inhibition and DNA damage and elicit a vigorous anticancer cancer immunity response. Considering US irradiation can efficiently generate large amounts of ROS under low-intensity irradiation, in this study, we aimed to design a polymeric, ROS-responsive SN38 nanoformulation for in vivo drug delivery. Upon the in-situ generation of ROS by US therapy, controlled on-demand release of SN38 occurred in tumor sites, which enhanced DNA damage, induced DC cell maturation, and boosted anticancer immunity. Our results demonstrated that a new strategy of involving the combination of a SN38 nanoformulation and US therapy could be used for cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , DNA Topoisomerases Tipo I , Linhagem Celular Tumoral , Imunoterapia , Neoplasias/terapia
4.
Mol Cell Biochem ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459276

RESUMO

Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-ex) have become a hopeful substitute for whole-cell therapy due to their minimal immunogenicity and tumorigenicity. The present study aimed to investigate the hypothesis that hUCMSC-ex can alleviate excessive inflammation resulting from intracerebral hemorrhage (ICH) and facilitate the rehabilitation of the nervous system in rats. In vivo, hemorrhagic stroke was induced by injecting collagenase IV into the striatum of rats using stereotactic techniques. hUCMSC-ex were injected via the tail vein at 6 h after ICH model establishment at a dosage of 200 µg. In vitro, astrocytes were pretreated with hUCMSC-ex and then stimulated with hemin (20 µmol/mL) to establish an ICH cell model. The expression of TLR4/NF-κB signaling pathway proteins and inflammatory factors, including TNF-α, IL-1ß, and IL-10, was assessed both in vivo and in vitro to investigate the impact of hUCMSC-ex on inflammation. The neurological function of the ICH rats was evaluated using the corner turn test, forelimb placement test, Longa score, and Bederson score on the 1st, 3rd, and 5th day. Additionally, RT-PCR was employed to examine the mRNA expression of TLR4 following hUCMSC-ex treatment. The findings demonstrated that hUCMSC-ex downregulated the protein expression of TLR4, NF-κB/P65, and p-P65, reduced the levels of pro-inflammatory cytokines TNF-α and IL-1ß, and increased the expression of the anti-inflammatory cytokine IL-10. Ultimately, the administration of hUCMSC-ex improved the behavioral performance of the ICH rats. However, the results of PT-PCR indicated that hUCMSC-ex did not affect the expression of TLR4 mRNA induced by ICH, suggesting that hUCMSCs-ex may inhibit TLR4 translation rather than transcription, thereby suppressing the TLR4/NF-κB signaling pathway. We can conclude that hUCMSC-ex mitigates hyperinflammation following ICH by inhibiting the TLR4/NF-κB signaling pathway. This study provides preclinical evidence for the potential future application of hUCMSC-ex in the treatment of cerebral injury.

5.
Exp Cell Res ; 436(2): 113960, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311048

RESUMO

PURPOSE: Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS: In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 µg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 µg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS: After being exposed to 150 µg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION: These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M1)/metabolismo , Autofagia/fisiologia , Células-Tronco Mesenquimais/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Cordão Umbilical
6.
Neurotherapeutics ; 21(2): e00317, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266580

RESUMO

Pink1 (PTEN-induced putative kinase 1) is a protein associated with maintaining mitochondrial function and integrity and has been reported to mediate neurodegeneration and neuroinflammation. While the role of Pink1 in intracerebral hemorrhage (ICH)-related neurological deficits and inflammatory responses is not deciphered. Congenic blood was transfused into the left corpus striatum to construct the ICH model in C57/BL6 wild-type (WT) and Pink1-/- mice. The relative expression of Pink1, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, Cd86, nitric oxide synthase 2 (Nos2), Cd206, arginase 1 (Arg-1), and IL-10 was detected with qRT-PCR, Western blotting, or ELISA. Mouse neurological deficit scores (mNSS) and water content were detected, and an open-field test was performed to assay anxiety-like behavior. Remarkably decreased Pink1 expression and increased MIP-2, IL-1ß, MCP-1, and TNF-α expression were observed after 12 â€‹h, 24 â€‹h, 48 â€‹h, 72 â€‹h, and 7 â€‹d post-ICH induction in the ipsilateral injury hemispheres. Pink1 deficiency could further up-regulate mNSS scores, brain water content, MIP-2, MCP-1, IL-1ß, and TNF-α in the ipsilateral injury hemispheres. On the other hand, Pink1 deficiency could decrease the number of center cross, the velocity, and the total distance traveled in open field test. Pink1 deficiency could further up-regulate the mRNA levels of pro-inflammatory (M1) molecules (Cd86, Nos2), and down-regulate the relative expression of anti-inflammatory (M2) molecules (Cd206, Arg-1, and IL-10). Pink1 deficiency deteriorates neurological deficits and inflammatory responses after ICH, which can be considered as a treatment target.


Assuntos
Interleucina-10 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Encéfalo/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Água/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
7.
BMC Med Genomics ; 16(1): 307, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037104

RESUMO

BACKGROUND: ATP7B is a copper-transporting protein that contributes to the chemo-resistance of human cancer cells. It remains unclear what the molecular mechanisms behind ATP7B are in cancer, as well as its role in human pan-cancer studies. METHODS: Our study evaluated the differential expression of ATP7B in cancer and paracancerous tissues based on RNA sequencing data from the GTEx and TCGA. Kaplan-Meier and Cox proportional hazards regressions were used to estimate prognostic factors associated with ATP7B.The correlations between the expression of ATP7B and immune cell infiltration, tumor mutation burden, microsatellite instability and immune checkpoint molecules were analyzed. Co-expression networks and mutations in ATP7B were analyzed using the web tools. An analysis of ATP7B expression difference on drug sensitivity on tumor cells was performed using the CTRP, GDSC and CMap database. RESULTS: ATP7B expression differed significantly between cancerous and paracancerous tissues. The abnormal expression of ATP7B was linked to prognosis in LGG and KIRC. Infiltration of immune cells, tumor mutation burden, microsatellite instability and immunomodulators had all been linked to certain types of cancer. Cancer cells exhibited a correlation between ATP7B expression and drug sensitivity. CONCLUSION: ATP7B might be an immunotherapeutic and prognostic biomarker based on its involvement in cancer occurrence and development.


Assuntos
Instabilidade de Microssatélites , Neoplasias , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Adjuvantes Imunológicos , Bases de Dados Factuais , Prognóstico
8.
Cancer Biomark ; 38(4): 505-522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980651

RESUMO

BACKGROUND: STEAP3 is a metal reductase located on the plasma membrane close to the nucleus and vesicles. Despite numerous studies indicating the involvement of STEAP3 in tumor advancement, the prognostic value of STEAP3 in glioma and the related mechanisms have not been fully investigated. METHODS: Initially, we examined the correlation between STEAP3 expression and the survival rate in various glioma datasets. To assess the prognostic capability of STEAP3 for one-year, three-year, and five-year survival, we created receiver operating characteristic (ROC) curves and nomograms. Additionally, an investigation was carried out to examine the mechanisms that contribute to the involvement of STEAP3 in gliomas, including immune and enrichment analysis. To confirm the expression of STEAP3 in LGG and GBM, tumor tissue samples were gathered, and cell experiments were conducted to explore the impacts of STEAP3. The function of STEAP3 in the tumor immune microenvironment was assessed using the M2 macrophage infiltration assay. RESULTS: We found that STEAP3 expressed differently in group with different age, tumor grade IDH and 1p19q status. The analysis of survival illustrated that glioma patients with high level of STEAP3 experienced shorter survival durations, especially for IDH-mutant astrocytoma. Cox analysis demonstrated that STEAP3 had potential to act as an independent prognostic factor for glioma. The predictive value of STEAP3 for glioma prognosis was demonstrated by ROC curves and nomogram. Immune analysis showed that STEAP3 may lead to a suppressive immune microenvironment through the control of immunosuppressive cell infiltration and Cancer-Immunity Cycle. Combining enrichment analysis and cell experiments, we discovered that STEAP3 can promote glioma progression through regulation of PI3K-AKT pathway and M2 macrophage infiltration. CONCLUSION: STEAP3 plays significant roles in the advancement of glioma by regulating immune microenvironment and PI3K-AKT pathway. It has the potential to serve as a therapy target for glioma.


Assuntos
Glioma , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Prognóstico , Glioma/genética , Biomarcadores , Microambiente Tumoral/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-37645688

RESUMO

Principal component analysis (PCA) plays an important role in the analysis of cryo-electron microscopy (cryo-EM) images for various tasks such as classification, denoising, compression, and ab initio modeling. We introduce a fast method for estimating a compressed representation of the 2-D covariance matrix of noisy cryo-EM projection images affected by radial point spread functions that enables fast PCA computation. Our method is based on a new algorithm for expanding images in the Fourier-Bessel basis (the harmonics on the disk), which provides a convenient way to handle the effect of the contrast transfer functions. For N images of size L × L, our method has time complexity O(NL3 + L4) and space complexity O(NL2 + L3). In contrast to previous work, these complexities are independent of the number of different contrast transfer functions of the images. We demonstrate our approach on synthetic and experimental data and show acceleration by factors of up to two orders of magnitude.

10.
Opt Express ; 31(9): 13552-13565, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157240

RESUMO

Phase-insensitive amplifiers (PIAs), as a class of important quantum devices, have found significant applications in the subtle manipulation of multiple quantum correlation and multipartite quantum entanglement. Gain is a very important parameter for quantifying the performance of a PIA. Its absolute value can be defined as the ratio of the output light beam power to the input light beam power, while its estimation precision has not been extensively investigated yet. Therefore, in this work, we theoretically study the estimation precision from the vacuum two-mode squeezed state (TMSS), the estimation precision of the coherent state, and the bright TMSS scenario, which has the following two advantages: it has more probe photons than the vacuum TMSS and higher estimation precision than the coherent state. The advantage in terms of estimation precision of the bright TMSS compared with the coherent state is researched. We first simulate the effect of noise from another PIA with gain M on the estimation precision of the bright TMSS, and we find that a scheme in which the PIA is placed in the auxiliary light beam path is more robust than two other schemes. Then, a fictitious beam splitter with transmission T is used to simulate the noise effects of propagation loss and imperfect detection, and the results show that a scheme in which the fictitious beam splitter is placed before the original PIA in the probe light beam path is the most robust. Finally, optimal intensity difference measurement is confirmed to be an accessible experimental technique to saturate estimation precision of the bright TMSS. Therefore, our present study opens a new avenue for quantum metrology based on PIAs.

11.
Nat Commun ; 14(1): 1313, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899070

RESUMO

Delicate geometries and suitable mechanical properties are essential for device applications of polymer materials. 3D printing offers unprecedented versatility, but the geometries and mechanical properties are typically fixed after printing. Here, we report a 3D photo-printable dynamic covalent network that can undergo two independently controllable bond exchange reactions, allowing reprogramming the geometry and mechanical properties after printing. Specifically, the network is designed to contain hindered urea bonds and pendant hydroxyl groups. The homolytic exchange between hindered urea bonds allows reconfiguring the printed shape without affecting the network topology and mechanical properties. Under different conditions, the hindered urea bonds are transformed into urethane bonds via exchange reactions with hydroxyl groups, which permits tailoring of the mechanical properties. The freedom to reprogram the shape and properties in an on-demand fashion offers the opportunity to produce multiple 3D printed products from one single printing step.

13.
Adv Mater ; 35(16): e2209824, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681865

RESUMO

Living creatures possess complex geometries, exceptional adaptability, and continuous growing and regenerating characteristics, which are difficult for synthetic materials to imitate simultaneously. A living polymer network with these features is reported. The polymer can be digitally printed into arbitrary 3D shapes and subsequently undergoes growth via living polymerization of a monomer as the nutrient. This leads to macroscopic dimensional growth and transforms the printed amorphous network into a crystallizable network, resulting in geometric adaptability via a shape-memory mechanism. By controlling the localized growth, an initial homogeneous structure can be converted into a geometrically different heterogeneous structure composed of materials with different properties (crystallization and mechanical properties). After growth, the original network can be chemically regenerated for regrowth. With this regenerative living 4D printing, one 3D-printed seed template can be turned into different derivatives with distinct geometries and mechanical properties when repeated regeneration is conducted in different localized regions and the degree of regrowth is varied.

14.
Front Oncol ; 12: 818283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119521

RESUMO

Background: Glioma is an aggressive tumor of the central nervous system. Caspase-6 (CASP6) plays a crucial role in cell pyroptosis and is a central protein involved in many cellular signaling pathways. However, the association between CASP6 and prognosis of glioma patients remains unclear. Methods: Four bioinformatic databases were analyzed to identify differentially expressed genes (DEGs) between glioma and healthy tissues. Eighty-one protein-coding pyroptosis-related genes (PRGs) were obtained from the GeneCards database. The pyroptosis-related DEGs (PRDEGs) were extracted from each dataset, and CASP6 was found to be aberrantly expressed in glioma. We then investigated the biological functions of CASP6 and the relationship between CASP6 expression and the tumor microenvironment and immunocyte infiltration. The half maximal inhibitory concentration of temozolomide and the response to immune checkpoint blockade in the high- and low-CASP6 expression groups were estimated using relevant bioinformatic algorithms. Quantitative real-time reverse transcription PCR and western blotting were carried out to confirm the different expression levels of CASP6 between human astrocytes and glioma cell lines (U251 and T98G). We determined the role of CASP6 in the tumorigenesis of glioma by knocking down CASP6 in U251 and T98G cell lines. Results: We found that CASP6 was overexpressed in glioma samples and in glioma cell lines. CASP6 expression in patients with glioma correlated negatively with overall survival. In addition, CASP6 expression correlated positively with the degree of glioma progression. Functional analysis indicated that CASP6 was primarily involved in the immune response and antigen processing and presentation. Patients with high CASP6 levels responded more favorably to temozolomide, while patients with low expression of CASP6 had a better response to immunotherapy. Finally, in vitro experiments showed that CASP6 knockdown inhibited glioma proliferation. Conclusions: The pyroptosis-related gene CASP6 might represent a sensitive prognostic marker for patients with glioma and might predict their response of immunotherapy and temozolomide therapy. Our results might lead to more precise immunotherapeutic strategies for patients with glioma.

15.
Front Cell Neurosci ; 16: 911973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928572

RESUMO

Objective: Intracerebral hemorrhage (ICH) is a common cerebrovascular disease with high incidence, disability, and mortality. Casein kinase 2 (CK2) is a serine/threonine kinase with hundreds of identified substrates and plays an important role in many diseases. This study aimed to explore whether CK2 plays protective roles in ICH-induced neuronal apoptosis, inflammation, and oxidative stress through regulation NR2B phosphorylation. Methods: CK2 expression level of brain tissues taken from ICH patients was determined by immunoblotting. Neurons from embryonic rat and astrocytes from newborn rats were cultured and treated by Hemoglobin chloride (Hemin). The proliferation of astrocytes, the apoptosis and oxidative stress of neurons and the inflammatory factors of astrocytes were detected. CK2 expression was determined in ICH model rats. The effects of CK2 overexpression plasmid (pc-CK2) on neurobehavioral defects and brain water content in ICH rats were observed. Results: CK2 expression in ICH patients was down-regulated. Overexpression of CK2 promoted the astrocyte proliferation, inhibited neuronal apoptosis, and reduced astrocyte-mediated inflammation. N-methyl-D-aspartate receptor 2B (NR2B) reversed the effects of pc-CK2 on neurons and astrocytes. CK2 phosphorylated NR2B at the S1480 site, down-regulated the expression of NR2B and interfered with the interaction between NR2B and postsynaptic density protein 95 (PSD95). In vivo experiments showed that the expression of CK2 decreased and the expression of NR2B increased in ICH rats. Furthermore, pc-CK2 attenuated neurobehavioral defects, brain water content and neuronal damage in ICH rats. Conclusion: CK2 phosphorylated NR2B, down-regulated the expression of NR2B, interfered with the interaction between NR2B and PSD95, alleviated inflammatory reactions, inhibited neuronal apoptosis and oxidative stress after ICH. CK2 and NR2B may be new potential therapeutic targets for the treatment of ICH. However, the limitation of this study is that we only investigated the regulation of NR2B by CK2.

16.
Comput Methods Programs Biomed ; 224: 107018, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901641

RESUMO

BACKGROUND AND OBJECTIVE: The contrast of cryo-EM images varies from one to another, primarily due to the uneven thickness of the ice layer. This contrast variation can affect the quality of 2-D class averaging, 3-D ab-initio modeling, and 3-D heterogeneity analysis. Contrast estimation is currently performed during 3-D iterative refinement. As a result, the estimates are not available at the earlier computational stages of class averaging and ab-initio modeling. This paper aims to solve the contrast estimation problem directly from the picked particle images in the ab-initio stage, without estimating the 3-D volume, image rotations, or class averages. METHODS: The key observation underlying our analysis is that the 2-D covariance matrix of the raw images is related to the covariance of the underlying clean images, the noise variance, and the contrast variability between images. We show that the contrast variability can be derived from the 2-D covariance matrix and we apply the existing Covariance Wiener Filtering (CWF) framework to estimate it. We also demonstrate a modification of CWF to estimate the contrast of individual images. RESULTS: Our method improves the contrast estimation by a large margin, compared to the previous CWF method. Its estimation accuracy is often comparable to that of an oracle that knows the ground truth covariance of the clean images. The more accurate contrast estimation also improves the quality of image restoration as demonstrated in both synthetic and experimental datasets. CONCLUSIONS: This paper proposes an effective method for contrast estimation directly from noisy images without using any 3-D volume information. It enables contrast correction in the earlier stage of single particle analysis, and may improve the accuracy of downstream processing.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos
17.
Front Oncol ; 12: 845036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494053

RESUMO

Calcium/calmodulin-dependent protein ID (CAMK1D) is widely expressed in many tissues and involved in tumor cell growth. However, its role in gliomas has not yet been elucidated. This study aimed to investigate the roles of CAMK1D in the proliferation, migration, and invasion of glioma. Through online datasets, Western blot, and immunohistochemical analysis, glioma tissue has significantly lower CAMK1D expression levels than normal brain (NB) tissues, and CAMK1D expression was positively correlated with the WHO classification. Kaplan-Meier survival analysis shows that CAMK1D can be used as a potential prognostic indicator to predict the overall survival of glioma patients. In addition, colony formation assay, cell counting Kit-8, and xenograft experiment identified that knockdown of CAMK1D promotes the proliferation of glioma cells. Transwell and wound healing assays identified that knockdown of CAMK1D promoted the invasion and migration of glioma cells. In the above experiments, the results of overexpression of CAMK1D were all contrary to those of knockdown. In terms of mechanism, this study found that CAMK1D regulates the function of glioma cells by the PI3K/AKT/mTOR pathway. In conclusion, these findings suggest that CAMK1D serves as a prognostic predictor and a new target for developing therapeutics to treat glioma.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35457598

RESUMO

Human excreta (HE) and food waste (FW) are the primary contaminants in rural regions. Prior to treating these contaminants, mastering their properties is required. In this study, the characteristics of the HE leaving the body and FW leaving the kitchen to the subsequent respective fermentation were studied. Moreover, two kinds of co-fermentation processes for HE and FW were also investigated on the basis of mastering the properties. The results showed that, for a healthy adult, fresh feces, urine, and FW produced were about 163 g/cap/d (57.3 gCOD/cap/d), 1.6 L/cap/d (6.7 gN/cap/d), and 250 g/cap/d (35.0 gCOD/cap/d), respectively. In HE, about 75% of nitrogen and phosphorus were contained in urine. It takes at least three days for crushed FW discharged via water flushing to settle completely, and the COD removal efficiency after precipitation was around 75%. Mixing HE with FW after discharge, i.e., the initial unit of the process was 20% more efficient in fermentation than mixing after the respective pre-fermentation. This paper presents the characteristics of HE and FW and provides the optimized co-fermentation process, which provides technical support for the realization of environmental sanitation in rural areas.


Assuntos
Alimentos , Eliminação de Resíduos , Reatores Biológicos , Fermentação , Humanos , Nitrogênio
19.
Adv Mater ; 34(21): e2201679, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35357046

RESUMO

Realization of muscle-like actuation for a liquid crystal elastomer (LCE) requires mesogen alignment, which is typically achieved/fixed chemically during the synthesis. Post-synthesis regulation of the alignment in a convenient and repeatable manner is highly desirable yet challenging. Here, a dual-phase LCE network is designed and synthesized with a crystalline melting transition above a liquid crystalline transition. The crystalline phase can serve as an "alignment frame" to fix any mechanical deformation via a shape memory mechanism, leading to corresponding mesogen alignment in the liquid crystalline phase. The alignment can be erased by melting, which can be the starting point for reprogramming. This strategy that relies on a physical shape memory transition for mesogen alignment permits repeated reprogramming in a timescale of seconds, in stark contrast to typical methods. It further leads to unusual versatility in designing 3D printed LCE with unlimited programmable actuation modes.

20.
Front Microbiol ; 13: 839845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126342

RESUMO

Recombinant viruses possessing reporter proteins as tools are widely applied in investigating viral biology because of the convenience for observation. Previously, we generated a recombinant pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) with enhanced green fluorescent protein (EGFP) reporter for monitoring virus spread and screening of neutralizing antibodies. PRRSV with different kinds of reporters can support more application scenarios. Here, we described a new genetically stable infectious clones of a highly pathogenic PRRSV (HP-PRRSV) harboring the DsRed (a red fluorescent protein isolated from the coral Discosoma) gene. In the recombinant infectious clone, the transcription regulatory sequence 2 (TRS2) of PRRSV was inserted between the open reading frame 7 (ORF7) and 3'UTR to drive the transcription of DsRed gene, which makes it a separate transcription unit in the viral genome. Using the bacterial artificial chromosome (BAC) system and cytomegalovirus (CMV) promoter, the recombinant HP-PRRSV with the DsRed insertion was successfully rescued and showed similar growth and replication patterns compared with the wild-type virus in the MARC-145 cells. In addition, the DsRed protein was stably expressed in the recombinant virus for at least 10 passages with consistent fluorescence intensity and density. Using the recombinant HP-PRRSV with DsRed protein, the virus tracking in MARC-145 was observed by live-cell imaging. Meanwhile, quantification of the DsRed fluorescence positive cells by flow cytometry provides an alternative to standard methods for testing the level of PRRSV infection. This recombinant PRRSV with DsRed fluorescence protein expression could be a useful tool for fundamental research on the viral biology and shows the new design for stable expression of foreign genes in PRRSV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...