Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 99(2): 670-677, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32029153

RESUMO

Feed additives that can modulate the poultry gastrointestinal tract and provide benefit to bird performance and health have recently received more interest for commercial applications. Such feed supplements offer an economic advantage because they may directly benefit poultry producers by either decreasing mortality rates of farm animals, increasing bird growth rates, or improve feed efficieny. They can also limit foodborne pathogen establishment in bird flocks by modifying the gastrointestinal microbial population. Prebiotics are known as non-digestible carbohydrates that selectively stimulate the growth of beneficial bacteria, thus improving the overall health of the host. Once prebiotics are introduced to the host, 2 major modes of action can potentially occur. Initially, the corresponding prebiotic reaches the intestine of the chicken without being digested in the upper part of the gastrointestinal tract but are selectively utilized by certain bacteria considered beneficial to the host. Secondly, other gut activities occur due to the presence of the prebiotic, including generation of short-chain fatty acids and lactic acid as microbial fermentation products, a decreased rate of pathogen colonization, and potential bird health benefits. In the current review, the effect of prebiotics on the gastrointestinal tract microbiome will be discussed as well as future directions for further research.


Assuntos
Galinhas/microbiologia , Dieta/veterinária , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Prebióticos/análise , Ração Animal/análise , Criação de Animais Domésticos/métodos , Animais
2.
Microorganisms ; 7(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671787

RESUMO

Peracetic acid (PAA) in poultry processing is not necessarily the same from company to company. Anecdotal evidence suggests that PeraClean may be more stable compared to the competition; however, it is not known what impact potential differences in chemical stability may have. In order to evaluate the antimicrobial effects of PAA, one PAA (PeraClean, P) was qualitatively compared against two competitor products (Competitors 1 and 2, C1 and C2) at the University of Arkansas Pilot Processing Plant. A total of 150 Ross 708 broilers (42 d) were used in the current study. Briefly, prior to treatment, 10 birds were sampled post-evisceration (C). Then, one of four treatment groups per PAA were applied (A1, A2, B1, and B2). The birds were dipped in either 400 ppm or 600 ppm PAA (A or B), chilled in either 25 ppm or 45 ppm PAA (1 or 2), and then manually agitated in 400 mL of nBPW for 1 min. There were 10 birds per treatment group in total. The resulting rinsates were transported to the Center for Food Safety and assessed for total microbiological load with total aerobic plate counts (Trypticase Soy Agar; APC), coliforms, (Eosin Methylene Blue Media; EMB), Salmonella (Xylose Lysine Deoxycholate agar, XLD), and Campylobacter (modified Charcoal Cefoperazone Deoxycholate Agar, mCCDA). The microbiological plates were incubated as per manufacturer's directions. Statistical analyses were calculated in JMP 14.0, with a significance level of p ≤ 0.05. Data indicate that all three sources of PAA are effective sanitizers for poultry processing applications compared within treatment. Qualitatively, there were differences in efficacy between the treatments. However, additional studies will be required to determine if those differences are quantitatively distinctive and if they are attributable to differences in product stability.

3.
J Environ Sci Health B ; 54(12): 972-978, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496354

RESUMO

There is limited research concerning the biofilm-forming capabilities of Salmonella Kentucky, a common poultry isolate. The objective was to quantitate pellicle formation of S. Kentucky versus better-characterized Salmonella strains of Enteritidis and Heidelberg. In separate experiments, Salmonella strains and serovars were tested for their biofilm-forming abilities in different Luria-Bertani (LB) broths (1); pellicle formation in different volumes of LB without salt (2); and the potential priming effects on formation after pellicles were transferred three consecutive times (3). Data were analyzed using One-Way ANOVA with means separated using Tukey's HSD (P ≤ 0.05). In the first experiment, there was no significant effect between strain and serovars (P > 0.05), but media type affected pellicle formation significantly with LB Miller and LB minus NaCl plus 2% glucose resulting in no pellicle formation (P < 0.001). When grown in 50 mL, Kentucky 38-0085 produced larger pellicles than Kentucky 38-0055, and Heidelberg strain 38-0127 (P < 0.0001). Serial transfers of pellicles did not significantly affect pellicle formation (P > 0.05); however, Kentucky 38-0084, 38-0085 and 38-0086 produced larger pellicles than Kentucky 38-0055 and 38-0056 and Heidelberg 38-0126, 38-0127 and 38-0152. The current study demonstrates the consistent biofilm forming capabilities of Kentucky and may explain why Kentucky is frequently isolated in poultry processing facilities.


Assuntos
Biofilmes , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella/fisiologia , Animais , Meios de Cultura/metabolismo , Aves Domésticas , Salmonella/classificação , Salmonella/genética , Salmonella/isolamento & purificação , Sorogrupo
4.
Front Microbiol ; 10: 1509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402900

RESUMO

Campylobacter is one of the most commonly reported foodborne human bacterial gastrointestinal pathogens. Campylobacter is the etiological agent of campylobacteriosis, which is generally a self-limited illness and therefore does not require treatment. However, when patients are immunocompromised or have other co-morbidities, antimicrobial treatment may be necessary for clinical treatment of campylobacteriosis, macrolides and fluoroquinolones are the drugs of choices. However, the increase in antimicrobial resistance of Campylobacter to clinically important antibiotics may become insurmountable. Because of the transmission between poultry and humans, the poultry industry must now allocate resources to address the problem by reducing Campylobacter as well as antimicrobial use, which may reduce resistance. This review will focus on the incidence of antibiotic-resistant Campylobacter in poultry, the clinical consequences of this resistance, and the mechanisms of antibiotic resistance associated with Campylobacter.

5.
Microorganisms ; 7(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324055

RESUMO

Salmonella enterica is one of the most prevalent foodborne pathogens. The large quantity of serovar types results in the colonization of a large spectrum of hosts, with different environmental conditions and hazards. The aim of this study was to evaluate the differences in gene expression (bcsA and csgD) of Salmonella enterica serovars Heidelberg, Kentucky, and Enteritidis during biofilm formation using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Overall, there appeared to be differences in expression between the different serovars with high variation between strains. These data are important as they demonstrate considerable variability in gene expression between serovars and strains of poultry isolates of Salmonella enterica.

6.
Front Vet Sci ; 6: 157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179291

RESUMO

While most of the focus on poultry microbiome research has been directed toward conventional poultry production, there is increasing interest in characterizing microbial populations originating from alternative or non-conventional poultry production. This is in part due to the growing general popularity in locally produced foods and more specifically the attractiveness of free-range or pasture raised poultry. Most of the focus of microbiome characterization in pasture flock birds has been on live bird production, primarily on the gastrointestinal tract. Interest in environmental impacts on production responses and management strategies have been key factors for comparative microbiome studies. This has important ramifications since these birds are not only raised under different conditions, but the grower cycle can be longer and in some cases slower growing breeds used. The impact of different feed additives is also of interest with some microbiome-based studies having examined the effect of feeding these additives to birds grown under pasture flock conditions. In the future, microbiome research approaches offer unique opportunities to develop better live bird management strategies and design optimal feed additive approaches for pasture flock poultry production systems.

7.
Genome Announc ; 6(14)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29622609

RESUMO

The draft genome sequences of four Salmonella enterica serovar Enteritidis and Kentucky isolates were evaluated for biofilm formation and antibiotic resistance. The Salmonella serovar Kentucky strains CFS84 and CFS85 and Salmonella serovar Enteritidis strains CFS86 and CFS87 were isolated from retail poultry sources in Arkansas.

8.
Front Microbiol ; 9: 3280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728816

RESUMO

The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques.

9.
Front Vet Sci ; 4: 93, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28660201

RESUMO

In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.

10.
Crit Rev Microbiol ; 43(3): 370-392, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27869522

RESUMO

One of the leading causes of foodborne illness in poultry products is Salmonella enterica. Salmonella hazards in poultry may be estimated and possible control methods modeled and evaluated through the use of quantitative microbiological risk assessment (QMRA) models and tools. From farm to table, there are many possible routes of Salmonella dissemination and contamination in poultry. From the time chicks are hatched through growth, transportation, processing, storage, preparation, and finally consumption, the product could be contaminated through exposure to different materials and sources. Examination of each step of the process is necessary as well as an examination of the overall picture to create effective countermeasures against contamination and prevent disease. QMRA simulation models can use either point estimates or probability distributions to examine variables such as Salmonella concentrations at retail or at any given point of processing to gain insight on the chance of illness due to Salmonella ingestion. For modeling Salmonella risk in poultry, it is important to look at variables such as Salmonella transfer and cross contamination during processing. QMRA results may be useful for the identification and control of critical sources of Salmonella contamination.


Assuntos
Contaminação de Alimentos , Microbiologia de Alimentos , Aves Domésticas/microbiologia , Medição de Risco/métodos , Salmonella , Animais , Fazendas , Manipulação de Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Modelos Teóricos , Doenças das Aves Domésticas/virologia , Produtos Avícolas/microbiologia , Salmonella/patogenicidade , Salmonelose Animal , Software , Estados Unidos
11.
J Environ Sci Health B ; 51(9): 602-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27192211

RESUMO

Salmonella serovars, one of the leading contributors to foodborne illness and are especially problematic for foods that are not cooked before consumption, such as fresh produce. The shipping containers that are used to transport and store fresh produce may play a role in cross contamination and subsequent illnesses. However, methods for quantitatively attached cells are somewhat variable. The overall goal of this study was to compare conventional plating with molecular methods for quantitating attached representative strains for Salmonella Typhimurium and Heidelberg on reusable plastic containers (RPC) coupons, respectively. We attached Salmonella enterica serovar Typhimurium ATCC 14028 and serovar Heidelberg SL486 (parent and an antibiotic resistant marker strain) to plastic coupons (2.54 cm(2)) derived from previously used shipping containers by growing for 72 h in tryptic soy broth. The impact of the concentration of sanitizer on log reductions between unsanitized and sanitized coupons was evaluated by exposing attached S. Typhimurium cells to 200 ppm and 200,000 ppm sodium hypochlorite (NaClO). Differences in sanitizer effectiveness between serovars were also evaluated with attached S. Typhimurium compared to attached S. Heidelberg populations after being exposed to 200 ppm peracetic acid (PAA). Treatment with NaClO caused an average of 2.73 ± 0.23 log CFU of S. Typhimurium per coupon removed with treatment at 200 ppm while 3.36 ± 0.54 log CFU were removed at 200,000 ppm. Treatment with PAA caused an average of 2.62 ± 0.15 log CFU removed for S. Typhimurium and 1.41 ± 0.17 log CFU for S. Heidelberg (parent) and 1.61 ± 0.08 log CFU (marker). Lastly, scanning electron microscopy (SEM) was used to visualize cell attachment and coupon surface topography. SEM images showed that remaining attached cell populations were visible even after sanitizer application. Conventional plating and qPCR yielded similar levels of enumerated bacterial populations indicating a high concordance between the two methods. Therefore, qPCR could be used for the rapid quantification of Salmonella attached on RPC.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Desinfetantes , Embalagem de Alimentos , Inocuidade dos Alimentos , Plásticos , Salmonella enterica/classificação , Salmonella enterica/isolamento & purificação , Contagem de Colônia Microbiana , Salmonella typhimurium/classificação , Salmonella typhimurium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...