Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 34, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291038

RESUMO

The superfluorescence effect has received extensive attention due to the many-body physics of quantum correlation in dipole gas and the optical applications of ultrafast bright radiation field based on the cooperative quantum state. Here, we demonstrate not only to observe the superfluorescence effect but also to control the cooperative state of the excitons ensemble by externally applying a regulatory dimension of coupling light fields. A new quasi-particle called cooperative exciton-polariton is revealed in a light-matter hybrid structure of a perovskite quantum dot thin film spin-coated on a Distributed Bragg Reflector. Above the nonlinear threshold, polaritonic condensation occurs at a nonzero momentum state on the lower polariton branch owning to the vital role of the synchronized excitons. The phase transition from superfluorescence to polariton condensation exhibits typical signatures of a decrease of the linewidth, an increase of the macroscopic coherence as well as an accelerated radiation decay rate. These findings are promising for opening new potential applications for super-brightness and unconventional coherent light sources and could enable the exploitation of cooperative effects for quantum optics.

2.
Nano Lett ; 23(20): 9538-9546, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818838

RESUMO

Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.

3.
Phys Rev Lett ; 129(20): 203401, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36462004

RESUMO

The concept of contact interaction is fundamental in various areas of physics. It simplifies physical models by replacing the detailed short-range interaction with a zero-range contact potential that reproduces the same low-energy scattering parameter, i.e., the s-wave scattering length. In this Letter, we generalize this concept to open quantum systems with short-range two-body losses. We show that the short-range two-body losses can be effectively described by a complex scattering length. However, in contrast to closed systems, the dynamics of an open quantum system is governed by the Lindblad master equation the includes a non-Hermitian Hamiltonian as well as an extra recycling term. We thus develop proper methods to regularize both terms in the master equation in the contact (zero-range) limit. We then apply our regularized complex contact interaction to study the dynamic problem of a weakly interacting and dissipating Bose-Einstein condensate. It is found that the physics is greatly enriched because the scattering length is continued from the real axis to the complex plane. For example, we show that a strong dissipation may prevent an attractive Bose-Einstein condensate from collapsing. We further calculate the particle decay in this system to the order of (density)^{3/2} which resembles the celebrated Lee-Huang-Yang correction to the ground state energy of interacting Bose gases [Lee and Yang, Phys. Rev. 105, 1119 (1957)PHRVAO0031-899X10.1103/PhysRev.105.1119; Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957)PHRVAO0031-899X10.1103/PhysRev.106.1135]. Possible methods for tuning the complex scattering length in cold atomic gas experiments are also discussed.

4.
ACS Nano ; 15(12): 19439-19445, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34878266

RESUMO

Two-dimensional materials are an emerging class of materials with a wide range of electrical and optical properties and potential applications. Single-layer structures of semiconducting transition metal dichalcogenides are gaining increasing attention for use in field-effect transistors. Here, we report a photoluminescence switching effect based on single-layer WSe2 transistors. Dual gates are used to tune the photoluminescence intensity. In particular, a side-gate is utilized to control the location of ions within a solid polymer electrolyte to form an electric double layer at the interface of electrolyte and WSe2 and induce a vertical electric field. Additionally, a back-gate is used to apply a second vertical electric field. An on-off ratio of the light emission up to 90 was observed under constant pump light intensity. In addition, a blue shift of the photoluminescence line up to 36 meV was observed. We attribute this blue shift to the decrease of exciton binding energy due to the change of nonlinear in-plane dielectric constant and use it to determine the third-order off-diagonal susceptibility χ(3) = 3.50 × 10-19 m2/V2.

5.
Phys Rev Lett ; 125(6): 065301, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845677

RESUMO

We investigate the radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. In the limit of a single impurity, we show using Fermi's golden rule that introducing (or injecting) an impurity into the medium is equivalent to ejecting an impurity that is initially interacting with the medium, since the "injection" and "ejection" spectral responses are simply related to each other by an exponential function of frequency. Thus, the full spectral information for the quantum impurity is contained in the injection spectral response, which can be determined using a range of theoretical methods, including variational approaches. We use this property to compute the finite-temperature equation of state and Tan contact of the Fermi polaron. Our results for the contact of a mobile impurity are in excellent agreement with recent experiments and we find that the finite-temperature behavior is qualitatively different compared to the case of infinite impurity mass.

6.
Phys Rev Lett ; 122(23): 230402, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298911

RESUMO

Inspired by the similarity between the fractal Weierstrass function and quantum systems with discrete scaling symmetry, we establish general conditions under which the dynamics of a quantum system will exhibit fractal structure in the time domain. As an example, we discuss the dynamics of the Loschmidt amplitude and the zero-momentum occupation of a single particle moving in a scale invariant 1/r^{2} potential. In order to show these conditions can be realized in ultracold atomic gases, we perform numerical simulations with practical experimental parameters, which shows that the dynamical fractal can be observed in realistic timescales. The predication can be directly verified in current cold atom experiments.

7.
Phys Rev Lett ; 121(24): 243401, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608757

RESUMO

We investigate the problem of N identical bosons that are coupled to an impurity particle with infinite mass. For noninteracting bosons, we show that a dynamical impurity-boson interaction, mediated by a closed-channel dimer, can induce an effective boson-boson repulsion which strongly modifies the bound states consisting of the impurity and N bosons. In particular, we demonstrate the existence of two universal "multibody" resonances, where all multibody bound states involving any N emerge and disappear. The first multibody resonance corresponds to infinite impurity-boson scattering length, a→+∞, while the second corresponds to the critical scattering length a^{*}>0 beyond which the trimer (N=2 bound state) ceases to exist. Crucially, we show that the existence of a^{*} ensures that the ground-state energy in the multibody bound-state region, ∞>a>a^{*}, is bounded from below, with a bound that is independent of N. Thus, even though the impurity can support multibody bound states, they become increasingly fragile beyond the dimer state. This has implications for the nature of the Bose polaron currently being studied in cold-atom experiments.

8.
Phys Rev Lett ; 118(8): 080403, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282164

RESUMO

In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

9.
Science ; 353(6297): 371-4, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27463669

RESUMO

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as the inverse of time t, the expansion of the cloud size exhibits a sequence of plateaus. The locations of these plateaus obey a discrete geometric scaling law with a controllable scale factor, and the expansion dynamics is governed by a log-periodic function. This marked expansion shares the same scaling law and mathematical description as the Efimov effect.

10.
Phys Rev Lett ; 112(1): 013201, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483896

RESUMO

In this Letter we address the issue of how synthetic spin-orbit (SO) coupling can strongly affect three-body physics in ultracold atomic gases. We consider a system which consists of three fermionic atoms, including two spinless heavy atoms and one spin-1/2 light atom subjected to an isotropic SO coupling. We find that SO coupling can induce universal three-body bound states with a negative s-wave scattering length at a smaller mass ratio, where no trimer bound state can exist if in the absence of SO coupling. The energies of these trimers are independent of the high-energy cutoff, and therefore they are universal ones. Moreover, the resulting atom-dimer resonance can be effectively controlled by SO coupling strength. Our results can be applied to systems like a 6Li and 40K mixture.

11.
Phys Rev Lett ; 110(4): 045302, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166175

RESUMO

It is known from the solution of the two-body problem that an anisotropic dipolar interaction can give rise to s-wave scattering resonances, which are named dipolar interaction induced resonances (DIIR). In this Letter, we study the zero-temperature many-body physics of a two-component Fermi gas across a DIIR. In the low-density regime, it is very striking that the resulting pairing order parameter is a nearly isotropic singlet pairing and the physics can be well described by an s-wave resonant interaction potential with finite range conditions, despite the anisotropic nature of the dipolar interaction. The pairing energy is as strong as a unitary Fermi gas near a magnetic Feshbach resonance. In the high-density regime, the anisotropic effect plays an important role. We find phase transitions from singlet pairing to a state with mixed singlet and triplet pairing and then from mixed pairing to pure triplet pairing. The state with mixed pairing spontaneously breaks the time-reversal symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...