Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12950-12966, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571102

RESUMO

Based on the optical Magnus effect, the analytical expressions of the electromagnetic field that a spinning dielectric sphere illuminated by polarized plane waves are derived according to the "instantaneous rest-frame" hypothesis and Minkowski's theory. More attention is paid to the near field. The unusual optical phenomena in mesoscale spheres without material and illumination wave asymmetry that are the photonic hook (PH) and whispering gallery mode (WGM)-like resonance caused by rotation are explored. The impact of resonance scattering on PHs is further analyzed under this framework. The influence of non-reciprocal rotating dimensionless parameter γ on PH and resonance is emphasized. The results in this paper have extensive application prospects in mesotronics, particle manipulation, resonator design, mechatronics, and planetary exploration.

2.
Appl Opt ; 62(34): 9164-9174, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108755

RESUMO

The scattering of a radially polarized (r p) Bessel vortex and nonvortex beam by a perfect electromagnetic conductor (PEMC) sphere is studied based on the generalized Lorenz-Mie theory. The electric and magnetic fields of the incident arbitrary-shaped polarized beams are constructed using vector spherical wave functions (VSWFs) and beam shape coefficients. The analytical expression of the scattered field is expanded using VSWFs and scattering coefficients, which are derived by considering PEMC boundary conditions. The expression of the normalized dimensionless far-field scattering intensity (NDFSI) is also defined and derived. The photonic nanojet (PNJ) and the "bottle beam" generated by the interaction between the PEMC sphere and the vortex and nonvortex Bessel beam under r p are emphasized in this paper. Moreover, the intensity and directivity of NDFSI are also considered. It has been found that the generation of the PNJ and the "bottle beam" is determined by the half-cone angle α 0 of the r p Bessel beam and admittance parameter M of the PEMC sphere. Furthermore, the influence of M, α 0, and integer order l of the Bessel beam on the intensity and distribution of NDFSI is also discussed. The findings are important in the research on meta-materials and promising prospects in microwave engineering, antenna engineering, imaging, subwavelength focusing, optical radiation force, and torque.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...