Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 75(2): 153-159, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37089089

RESUMO

This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.


Assuntos
Microglia , NF-kappa B , Animais , Camundongos , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacologia , Hipóxia , Ligantes , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , RNA Mensageiro/metabolismo
2.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 401-405, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37088741

RESUMO

OBJECTIVE: To investigate the effects of blocking lactate synthesis on the HT22 cell injuries caused by hypoxia. METHODS: 2-deoxy-D-glucose (2-DG) is a non-metabolized glucose analogue that can inhibit lactate synthesis by blocking glycolysis. HT22 cells were divided into 4 groups: Control group, 2-DG group, Hypoxia group and 2-DG+Hypoxia group. The cells in control group and 2-DG treatment group were cultured in a 37℃, 5% CO2 incubator, and thecells in hypoxia group and 2-DG + Hypoxia group were cultured in a hypoxia incubator. The concentrations of 2-DG were 2.5 and 5 mmol/L, the concentration of oxygen was 0.3%, and the treatment time was 24 h. Cell activity was detected by CCK-8 assay, the levels of lactate in cell culture medium were detected by spectrophotometry, cell morphology was observed by fluorescence staining, the level of reactive oxygen species (ROS) was detected by flow cytometry, and the activities of superoxide dismutase (SOD) and catalase (CAT) were determined by enzyme activity kits. The protein expression levels of p-p38, t-p38 and ß-actin were detected by Western blot. RESULTS: Compared with that in control group, the lactate level in culture medium and cell activity were decreased significantly (P<0.01), the number of adherent cells was decreased, the level of ROS was increased (P<0.01), and the enzyme activity of CAT was decreased (P<0.05) in the 2-DG group. In the hypoxia group, the level of lactate in the culture medium was increased significantly (P<0.01), the cell activity was decreased (P<0.01), the number of adherent cells was decreased, the ROS levels were increased (P<0.01), and the enzyme activities of CAT and SOD were decreased (P<0.01 or P<0.05). In 2-DG+Hypoxia group, the level of lactate was decreased significantly (P<0.05), the cell viability was decreased significantly (P<0.01), the number of cells was decreased significantly, and the ability of adhere to the wall was weakened significantly. The level of ROS was increased significantly (P<0.01), the enzyme activities of CAT and SOD were decreased significantly (P<0.01), the protein expression level of p-p38 was increased significantly (P<0.05), and there was no change in t-p38. Compared with hypoxia groups, in 2-DG combined with hypoxia group, the level of lactate induced by hypoxia, the cell activity, and the enzyme activity level of CAT were decreased significantly (all P<0.01), while the level of ROS was increased significantly (P< 0.01). CONCLUSION: Blocking lactate can reduce the cell activity level under hypoxia and aggravate the oxidative stress injury of HT22 cells. The mechanisms may be related to increasing ROS level and activating p38 signal pathway.


Assuntos
Hipóxia , Ácido Láctico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Hipóxia/metabolismo , Estresse Oxidativo , Neurônios , Superóxido Dismutase/metabolismo , Desoxiglucose/metabolismo , Desoxiglucose/farmacologia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...