Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 263: 115395, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611475

RESUMO

Deoxynivalenol (DON), a mycotoxin primarily produced by Fusarium graminearum (F. graminearum), is widely present in food and feed, posing great hazards to human and livestock health. In this study, a strain of Acinetobacter pittii (A. pittii) S12 capable of degrading DON was isolated from soil samples and identified through morphological characterization, biochemistry analysis, and 16 S rRNA gene sequencing. The results of HPLC-MS indicated that the degradation products underwent a conversion from [M-H]- to [M+CH3CO], with concomitant transformation of the hydroxyl group into an acetyl moiety. Based on transcriptome sequencing analysis, the acyltransferase encoded by DLK06_RS13370 was predicted to be the pivotal gene responsible for DON biotransformation. The result of molecular docking analysis suggest a high affinity between the enzyme and DON. The recombinant protein encoded by DLK06_RS13370 was expressed in Escherichia coli (E. coli) and demonstrated the capacity to catalyze the conversion of DON into 3-Acetyl-deoxynivalenol (3-ADON), as confirmed by HPLC analysis. In conclusion, our findings confirm that the acyltransferase encoded by DLK06-RS13370 is responsible for the acetylation of DON. This sheds light on the co-occurrence of DON and its acetyl-derivatives in wheat-based products. DATA AVAILABILITY: Not applicable.


Assuntos
Aciltransferases , Escherichia coli , Humanos , Aciltransferases/genética , Simulação de Acoplamento Molecular , Transcriptoma
2.
Environ Sci Pollut Res Int ; 28(16): 19866-19877, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410044

RESUMO

Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.


Assuntos
Metais Pesados , Microbiota , Biodegradação Ambiental , Cromo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...