Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785052

RESUMO

Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) is an attractive therapeutic strategy for targeting cancer metabolism. So far, many potent NAMPT inhibitors have been developed and shown to bind to two unique tunnel-shaped cavities existing adjacent to each active site of a NAMPT homodimer. However, cytotoxicities and resistances to NAMPT inhibitors have become apparent. Therefore, there remains an urgent need to develop effective and safe NAMPT inhibitors. Thus, we designed and synthesized two close structural analogues of NAMPT inhibitors, azaindole-piperidine (3a)- and azaindole-piperazine (3b)-motif compounds, which were modified from the well-known NAMPT inhibitor FK866 (1). Notably, 3a displayed considerably stronger enzyme inhibitory activity and cellular potency than did 3b and 1. The main reason for this phenomenon was revealed to be due to apparent electronic repulsion between the replaced nitrogen atom (N1) of piperazine in 3b and the Nδ atom of His191 in NAMPT by our in silico binding mode analyses. Indeed, 3b had a lower binding affinity score than did 3a and 1, although these inhibitors took similar stable chair conformations in the tunnel region. Taken together, these observations indicate that the electrostatic enthalpy potential rather than entropy effects inside the tunnel cavity has a significant impact on the different binding affinity of 3a from that of 3b in the disparate enzymatic and cellular potencies. Thus, it is better to avoid or minimize interactions with His191 in designing further effective NAMPT inhibitors.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Indóis/química , Cinética , Simulação de Acoplamento Molecular , Nicotinamida Fosforribosiltransferase/metabolismo , Piperazina/química , Piperidinas/química
2.
Biochem Biophys Res Commun ; 381(4): 482-6, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19233126

RESUMO

NaPi-IIb encodes a Na(+)-dependent Pi co-transporter, which is expressed in various adult tissues and mediates transport of extracellular Pi ions coupling with Na(+) ion. To define the role of NaPi-IIbin vivo, NaPi-IIb gene deficient mice were generated utilizing targeted mutagenesis, yielding viable, heterozygous NaPi-IIb mice. In contrast, homozygous NaPi-IIb mice died in utero soon after implantation, indicating that NaPi-IIb was essential for early embryonic development. In situ hybridization revealed NaPi-IIb mRNA expression in the parietal endoderm, followed by the visceral endoderm, at a time point prior to establishment of a functioning chorio-allantoic placenta. At the time point of functional placenta development, the main site of NaPi-IIb production resided in the labyrinthine zone, where embryonic and maternal circulations were in closest contact. Expression patterns of NaPi-IIb suggest that NaPi-IIb plays an important role in Pi absorption from maternal circulation.


Assuntos
Perda do Embrião/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/fisiologia , Animais , Desenvolvimento Embrionário/genética , Feminino , Deleção de Genes , Expressão Gênica , Camundongos , Camundongos Mutantes , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...