Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(18): e202300437, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545029

RESUMO

Application of bioisostere plays an important role in drug discovery. α-Aminoboronic acid is the familiar bioisostere of α-amino acid. Developing reactions for the synthesis of a wide variety of α-aminoboronic acid is one important task for synthetic chemistry. Herein, we report the development of nucleophilic C-borylation chemistry for N-arylimines catalyzed by nickel. The reaction proceeds through the insertion of a borylnickel species into the C=N bond to afford the corresponding α-aminoboronate, which was isolated as acetamide after trapping with acetic anhydride. N-Benzyl imine is also tolerated by the developed reaction.

2.
Sci Rep ; 13(1): 3190, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823281

RESUMO

Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.


Assuntos
Cyprinidae , Perciformes , Animais , Vasotocina/genética , Edição de Genes , Perciformes/genética , Agressão , Cyprinidae/genética
3.
Sci Rep ; 11(1): 22444, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789769

RESUMO

TonB-dependent transporters (TBDTs) mediate outer membrane transport of nutrients using the energy derived from proton motive force transmitted from the TonB-ExbB-ExbD complex localized in the inner membrane. Recently, we discovered ddvT encoding a TBDT responsible for the uptake of a 5,5-type lignin-derived dimer in Sphingobium sp. strain SYK-6. Furthermore, overexpression of ddvT in an SYK-6-derivative strain enhanced its uptake capacity, improving the rate of platform chemical production. Thus, understanding the uptake system of lignin-derived aromatics is fundamental for microbial conversion-based lignin valorization. Here we examined whether multiple tonB-, exbB-, and exbD-like genes in SYK-6 contribute to the outer membrane transport of lignin-derived aromatics. The disruption of tonB2-6 and exbB3 did not reduce the capacity of SYK-6 to convert or grow on lignin-derived aromatics. In contrast, the introduction of the tonB1-exbB1-exbD1-exbD2 operon genes into SYK-6, which could not be disrupted, promoted the conversion of ß-O-4-, ß-5-, ß-1-, ß-ß-, and 5,5-type dimers and monomers, such as ferulate, vanillate, syringate, and protocatechuate. These results suggest that TonB-dependent uptake involving the tonB1 operon genes is responsible for the outer membrane transport of the above aromatics. Additionally, exbB2/tolQ and exbD3/tolR were suggested to constitute the Tol-Pal system that maintains the outer membrane integrity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lignina/metabolismo , Proteínas de Membrana/metabolismo , Sphingomonadaceae/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Hidrocarbonetos Aromáticos/metabolismo , Proteínas de Membrana/genética , Força Próton-Motriz , Sphingomonadaceae/genética
4.
Front Vet Sci ; 7: 590834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330717

RESUMO

The Carolina anole (Anolis carolinensis) is regarded as a problem in the Ogasawara Islands. The decision to use eradication measures depends on the limit of detection at low densities. We tested the ability of two dogs to discriminate the odor of anole to assess the possibility of using dogs to detect anoles at low densities. The two dogs were trained to discriminate the basic target odor concentration (512 anoles/ha) on 10-g coconut peat sachets. When they reached 100% accuracy, they were tested at different odor concentrations (densities of 385, 256, 128, 26, and 3 anoles/ha). During training, both dogs achieved 100% accuracy after 2 daily sessions in only 2 days. They were able to select the positive odor concentration sachet, and their accuracy was from 75 to 100%. We believe that testing using soil from sites of high anole high density and at the limit of detection in the Ogasawara Islands will be useful.

5.
Nat Mater ; 19(7): 738-744, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32152564

RESUMO

Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of ∼1013 cm-2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...