Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Genet ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014190

RESUMO

Genome-wide association studies have enabled the identification of important genetic factors in many trait studies. However, only a fraction of the heritability can be explained by known genetic factors, even in the most common diseases. Genetic loci combinations, or epistatic contributions expressed by combinations of single nucleotide polymorphisms (SNPs), have been argued to be one of the critical factors explaining some of the missing heritability, especially in oligogenic/polygenic diseases. Rheumatoid arthritis (RA) is a complex disease with more than 100 reported SNP associations, as well as various HLA haplotypes and amino acids; however, many associations between RA and inter-chromosomal SNP combinations are unknown. To discover novel associations of epistatic interactions with high odds ratios in RA, we applied the LAMPLINK method, a systematic enumerative procedure for identifying high-order SNP combinations, to a Japanese RA cohort (discovery cohort; 4024 patients with RA and 7731 controls). We validated the identified associations in a different Japanese cohort (validation cohort; 810 RA patients and 6303 controls). In this study, we identified 90 significant genetic associations in the discovery cohort. Among these, 74 (82.2%) associations were replicated in the validation cohort, and eight combinations were inter-chromosomal, all of which comprised rs7765379 or rs35265698 located in the HLA region. These two SNPs exhibited strong correlations with valine at amino acid position 11 in HLA-DRB1 (HLA-DRB1-11-Val). Finally, we discovered that rs9624 showed an association with RA through an epistatic interaction with HLA-DRB1-11-Val. Overall, LAMPLINK showed high reliability for identifying epistatic genetic contributions hidden in complex traits.

2.
Nat Commun ; 11(1): 1063, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102997

RESUMO

Mediator is a coregulatory complex that regulates transcription of Pol II-dependent genes. Previously, we showed that human Mediator subunit MED26 plays a role in the recruitment of Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to regulate the expression of certain genes. MED26 plays a role in recruiting SEC to protein-coding genes including c-myc and LEC to small nuclear RNA (snRNA) genes. However, how MED26 engages SEC or LEC to regulate distinct genes is unclear. Here, we provide evidence that MED26 recruits LEC to modulate transcription termination of non-polyadenylated transcripts including snRNAs and mRNAs encoding replication-dependent histone (RDH) at Cajal bodies. Our findings indicate that LEC recruited by MED26 promotes efficient transcription termination by Pol II through interaction with CBC-ARS2 and NELF/DSIF, and promotes 3' end processing by enhancing recruitment of Integrator or Heat Labile Factor to snRNA or RDH genes, respectively.


Assuntos
Regulação da Expressão Gênica/genética , Complexo Mediador/genética , RNA Nuclear Pequeno/genética , Terminação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
3.
Nat Commun ; 6: 5941, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25575120

RESUMO

Regulation of transcription elongation by RNA polymerase II (Pol II) is a key regulatory step in gene transcription. Recently, the little elongation complex (LEC)-which contains the transcription elongation factor ELL/EAF-was found to be required for the transcription of Pol II-dependent small nuclear RNA (snRNA) genes. Here we show that the human Mediator subunit MED26 plays a role in the recruitment of LEC to a subset of snRNA genes through direct interaction of EAF and the N-terminal domain (NTD) of MED26. Loss of MED26 in cells decreases the occupancy of LEC at a subset of snRNA genes and results in a reduction in their transcription. Our results suggest that the MED26-NTD functions as a molecular switch in the exchange of TBP-associated factor 7 (TAF7) for LEC to facilitate the transition from initiation to elongation during transcription of a subset of snRNA genes.


Assuntos
Complexo Mediador/metabolismo , Elongação Traducional da Cadeia Peptídica , RNA Nuclear Pequeno/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , DNA Polimerase II/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação Puntual , Ligação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Células Sf9 , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo
4.
Biochem Biophys Res Commun ; 423(1): 104-9, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22634006

RESUMO

The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.


Assuntos
Proliferação de Células , NF-kappa B/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Regulação para Baixo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , NF-kappa B/metabolismo , Células NIH 3T3 , Proteínas Repressoras/genética , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...