Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Res Sq ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38746124

RESUMO

An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.

2.
J Biol Chem ; 300(6): 107388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763333

RESUMO

As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.


Assuntos
Células Mieloides , Peptidil Dipeptidase A , Animais , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Células Mieloides/metabolismo , Células Mieloides/imunologia , Células Mieloides/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Angiotensina II/farmacologia
3.
Sci Rep ; 14(1): 4911, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418473

RESUMO

Structure of metallic glasses fascinates as the generic amorphous structural template for ubiquitous systems. Its specification necessitates determination of the complete hierarchical structure, starting from short-range-order (SRO) → medium-range-order (MRO) → bulk structure and free volume (FV) distribution. This link has largely remained elusive since previous investigations adopted one-technique-at-a-time approach, focusing on limited aspects of any one domain. Reconstruction of structure from experimental data inversion is non-unique for many of these techniques. As a result, complete and precise structural understanding of glass has not emerged yet. In this work, we demonstrate the first experimental pathway for reconstruction of the integrated structure, for Zr 67 Ni 33 and Zr 52 Ti 6 Al 10 Cu 18 Ni 14 glasses. Our strategy engages diverse (× 7) multi-scale techniques [XAFS, 3D-APT, ABED/NBED, FEM, XRD, PAS, FHREM] on the same glass. This strategy complemented mutual limitations of techniques and corroborated common parameters to generate complete, self-consistent and precise parameters. Further, MRO domain size and inter-void separation were correlated to identify the presence of FV at MRO boundaries. This enabled the first experimental reconstruction of hierarchical subset: SRO → MRO → FV → bulk structure. The first ever image of intermediate region between MRO domains emerged from this link. We clarify that determination of all subsets is not our objective; the essence and novelty of this work lies in directing the pathway towards finite solution, in the most logical and unambiguous way.

4.
Med Res Rev ; 44(2): 587-605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947345

RESUMO

The renin-angiotensin system (RAS) has been widely known as a circulating endocrine system involved in the control of blood pressure. However, components of RAS have been found to be localized in rather unexpected sites in the body including the kidneys, brain, bone marrow, immune cells, and reproductive system. These discoveries have led to steady, growing evidence of the existence of independent tissue RAS specific to several parts of the body. It is important to understand how RAS regulates these systems for a variety of reasons: It gives a better overall picture of human physiology, helps to understand and mitigate the unintended consequences of RAS-inhibiting or activating drugs, and sets the stage for potential new therapies for a variety of ailments. This review fulfills the need for an updated overview of knowledge about local tissue RAS in several bodily systems, including their components, functions, and medical implications.


Assuntos
Rim , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Rim/metabolismo , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
5.
J Biol Chem ; 300(1): 105486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992807

RESUMO

Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.


Assuntos
Fertilização , PPAR gama , Peptidil Dipeptidase A , Espermatozoides , Animais , Feminino , Humanos , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fertilização/genética , PPAR gama/genética , PPAR gama/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Testículo/enzimologia , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteínas Mitocondriais/genética , Técnicas de Inativação de Genes , Fosforilação Oxidativa
6.
Front Immunol ; 14: 1278383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928535

RESUMO

The pathogenesis of atherosclerosis is defined by impaired lipid handling by macrophages which increases intracellular lipid accumulation. This dysregulation of macrophages triggers the accumulation of apoptotic cells and chronic inflammation which contributes to disease progression. We previously reported that mice with increased macrophage-specific angiotensin-converting enzyme, termed ACE10/10 mice, resist atherosclerosis in an adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-induced model. This is due to increased lipid metabolism by macrophages which contributes to plaque resolution. However, the importance of ACE in peripheral blood monocytes, which are the primary precursors of lesional-infiltrating macrophages, is still unknown in atherosclerosis. Here, we show that the ACE-mediated metabolic phenotype is already triggered in peripheral blood circulating monocytes and that this functional modification is directly transferred to differentiated macrophages in ACE10/10 mice. We found that Ly-6Clo monocytes were increased in atherosclerotic ACE10/10 mice. The monocytes isolated from atherosclerotic ACE10/10 mice showed enhanced lipid metabolism, elevated mitochondrial activity, and increased adenosine triphosphate (ATP) levels which implies that ACE overexpression is already altered in atherosclerosis. Furthermore, we observed increased oxygen consumption (VO2), respiratory exchange ratio (RER), and spontaneous physical activity in ACE10/10 mice compared to WT mice in atherosclerotic conditions, indicating enhanced systemic energy consumption. Thus, ACE overexpression in myeloid lineage cells modifies the metabolic function of peripheral blood circulating monocytes which differentiate to macrophages and protect against atherosclerotic lesion progression due to better lipid metabolism.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Camundongos , Aterosclerose/patologia , Lipídeos , Células Mieloides/patologia
7.
8.
Cardiovasc Res ; 119(9): 1825-1841, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225143

RESUMO

AIMS: The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis. METHODS AND RESULTS: Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet. Animals with increased macrophage ACE (ACE 10/10 mice) have a marked reduction in atherosclerosis vs. WT mice. Macrophages from both the aorta and peritoneum of ACE 10/10 express increased PPARα and have a profoundly altered phenotype to process lipids characterized by higher levels of the surface scavenger receptor CD36, increased uptake of lipid, increased capacity to transport long chain fatty acids into mitochondria, higher oxidative metabolism and lipid ß-oxidation as determined using 13C isotope tracing, increased cell ATP, increased capacity for efferocytosis, increased concentrations of the lipid transporters ABCA1 and ABCG1, and increased cholesterol efflux. These effects are mostly independent of angiotensin II. Human THP-1 cells, when modified to express more ACE, increase expression of PPARα, increase cell ATP and acetyl-CoA, and increase cell efferocytosis. CONCLUSION: Increased macrophage ACE expression enhances macrophage lipid metabolism, cholesterol efflux, efferocytosis, and it reduces atherosclerosis. This has implications for the treatment of cardiovascular disease with angiotensin II receptor antagonists vs. ACE inhibitors.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Angiotensinas/metabolismo , Trifosfato de Adenosina/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
9.
Front Behav Neurosci ; 17: 1148549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200783

RESUMO

The wet-dog shake behavior (WDS) is a short-duration behavior relevant to the study of various animal disease models, including acute seizures, morphine abstinence, and nicotine withdrawal. However, no animal behavior detection system has included WDS. In this work, we present a multi-view animal behavior detection system based on image classification and use it to detect rats' WDS behavior. Our system uses a novel time-multi-view fusion scheme that does not rely on artificial features (feature engineering) and is flexible to adapt to other animals and behaviors. It can use one or more views for higher accuracy. We tested our framework to classify WDS behavior in rats and compared the results using different amounts of cameras. Our results show that the use of additional views increases the performance of WDS behavioral classification. With three cameras, we achieved a precision of 0.91 and a recall of 0.86. Our multi-view animal behavior detection system represents the first system capable of detecting WDS and has potential applications in various animal disease models.

10.
Front Rehabil Sci ; 4: 1121034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968213

RESUMO

Introduction: Patients with schizophrenia experience the most prolonged hospital stay in Japan. Also, the high re-hospitalization rate affects their quality of life (QoL). Despite being an effective predictor of treatment, QoL has not been widely utilized due to time constraints and lack of interest. As such, this study aimed to estimate the schizophrenic patients' subjective quality of life using speech features. Specifically, this study uses speech from patients with schizophrenia to estimate the subscale scores, which measure the subjective QoL of the patients. The objectives were to (1) estimate the subscale scores from different patients or cross-sectional measurements, and 2) estimate the subscale scores from the same patient in different periods or longitudinal measurements. Methods: A conversational agent was built to record the responses of 18 schizophrenic patients on the Japanese Schizophrenia Quality of Life Scale (JSQLS) with three subscales: "Psychosocial," "Motivation and Energy," and "Symptoms and Side-effects." These three subscales were used as objective variables. On the other hand, the speech features during measurement (Chromagram, Mel spectrogram, Mel-Frequency Cepstrum Coefficient) were used as explanatory variables. For the first objective, a trained model estimated the subscale scores for the 18 subjects using the Nested Cross-validation (CV) method. For the second objective, six of the 18 subjects were measured twice. Then, another trained model estimated the subscale scores for the second time using the 18 subjects' data as training data. Ten different machine learning algorithms were used in this study, and the errors of the learned models were compared. Results and Discussion: The results showed that the mean RMSE of the cross-sectional measurement was 13.433, with k-Nearest Neighbors as the best model. Meanwhile, the mean RMSE of the longitudinal measurement was 13.301, using Random Forest as the best. RMSE of less than 10 suggests that the estimated subscale scores using speech features were close to the actual JSQLS subscale scores. Ten out of 18 subjects were estimated with an RMSE of less than 10 for cross-sectional measurement. Meanwhile, five out of six had the same observation for longitudinal measurement. Future studies using a larger number of subjects and the development of more personalized models based on longitudinal measurements are needed to apply the results to telemedicine for continuous monitoring of QoL.

11.
Front Immunol ; 14: 1304086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288124

RESUMO

During transfusion of red blood cells (RBCs), recipients are exposed to both ABO and non-ABO 'minor' antigens. RBC donor units and recipient RBCs are not routinely matched for non-ABO antigens. Thus, recipients are exposed to many RBC alloantigens that can lead to RBC alloantibody production and subsequent clinically significant hemolysis. RBC alloantibodies also significantly limit the provision of compatible RBC units for recipients. Prior studies indicate that the frequency of RBC alloimmunization is increased during inflammatory responses and in patients with autoimmune diseases. Still, mechanisms contributing to alloimmune responses in patients with autoimmunity are not well understood. More than half of adult patients with systemic lupus erythematosus (SLE) produce type 1 interferons (IFNα/ß) and express IFNα/ß stimulated genes (ISGs). Previously, we reported that IFNα/ß promote RBC alloimmune responses in the pristane mouse model, which develops a lupus-like phenotype that is dependent on IFNα/ß signaling. However, it is unclear whether IFNα/ß or the lupus-like phenotype induces alloimmunization in lupus models. Therefore, we tested the hypothesis that IFNα/ß promotes RBC alloimmune responses in lupus by examining alloimmune responses in IFNα/ß-independent (MRL-lpr) and IFNα/ß-dependent (pristane) lupus models. Whereas pristane treatment significantly induced interferon-stimulated genes (ISGs), MRL-lpr mice produced significantly lower levels that were comparable to levels in untreated WT mice. Transfusion of murine RBCs that express the KEL antigen led to anti-KEL IgG production by pristane-treated WT mice. However, MRL-lpr mice produced minimal levels of anti-KEL IgG. Treatment of MRL-lpr mice with recombinant IFNα significantly enhanced alloimmunization. Collectively, results indicate that a lupus-like phenotype in pre-clinical models is not sufficient to induce RBC alloantibody production, and IFNα/ß gene signatures may be responsible for RBC alloimmune responses in lupus mouse models. If these findings are extended to alternate pre-clinical models and clinical studies, patients with SLE who express an IFNα/ß gene signature may have an increased risk of developing RBC alloantibodies and may benefit from more personalized transfusion protocols.


Assuntos
Isoanticorpos , Lúpus Eritematoso Sistêmico , Terpenos , Humanos , Camundongos , Animais , Camundongos Endogâmicos MRL lpr , Eritrócitos , Modelos Animais de Doenças , Interferons , Imunoglobulina G
12.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358691

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with poor prognosis, which is mainly due to drug resistance. The biology determining the response to chemo-radiotherapy in HNSCC is poorly understood. Using clinical samples, we found that miR124-3p and miR766-3p are overexpressed in chemo-radiotherapy-resistant (non-responder) HNSCC, as compared to responder tumors. Our study shows that inhibition of miR124-3p and miR766-3p enhances the sensitivity of HNSCC cell lines, CAL27 and FaDu, to 5-fluorouracil and cisplatin (FP) chemotherapy and radiotherapy. In contrast, overexpression of miR766-3p and miR124-3p confers a resistance phenotype in HNSCC cells. The upregulation of miR124-3p and miR766-3p is associated with increased HNSCC cell invasion and migration. In a xenograft mouse model, inhibition of miR124-3p and miR766-3p enhanced the efficacy of chemo-radiotherapy with reduced growth of resistant HNSCC. For the first time, we identified that miR124-3p and miR766-3p attenuate expression of CREBRF and NR3C2, respectively, in HNSCC, which promotes aggressive tumor behavior by inducing the signaling axes CREB3/ATG5 and ß-catenin/c-Myc. Since miR124-3p and miR766-3p affect complementary pathways, combined inhibition of these two miRNAs shows an additive effect on sensitizing cancer cells to chemo-radiotherapy. In conclusion, our study demonstrated a novel miR124-3p- and miR766-3p-based biological mechanism governing treatment-resistant HNSCC, which can be targeted to improve clinical outcomes in HNSCC.

13.
Viruses ; 14(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36298737

RESUMO

Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19) is known to cause mild to acute respiratory infection and sometimes progress towards respiratory failure and death. The mechanisms driving the progression of the disease and accumulation of high viral load in the lungs without initial symptoms remain elusive. In this study, we evaluated the upper respiratory tract host transcriptional response in COVID-19 patients with mild to severe symptoms and compared it with the control COVID-19 negative group using RNA-sequencing (RNA-Seq). Our results reveal an upregulated early type I interferon response in severe COVID-19 patients as compared to mild or negative COVID-19 patients. Moreover, severely symptomatic patients have pronounced induction of interferon stimulated genes (ISGs), particularly the oligoadenylate synthetase (OAS) family of genes. Our results are in concurrence with other studies depicting the early induction of IFN-I response in severe COVID-19 patients, providing novel insights about the ISGs involved.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , SARS-CoV-2 , Transcriptoma , Interações Hospedeiro-Patógeno , Antivirais , Interferon Tipo I/genética , Pulmão , Ligases , RNA
14.
iScience ; 25(8): 104812, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35982786

RESUMO

To investigate biological mechanisms underlying social behaviors and their deficits, social communication via ultrasonic vocalizations (USVs) in mice has received considerable attention as a powerful experimental model. The advances in sound localization technology have facilitated the analysis of vocal interactions between multiple mice. However, existing sound localization systems are built around distributed-microphone arrays, which require a special recording arena and long processing time. Here, we report a novel acoustic camera system, USVCAM, which enables simpler and faster USV localization and assignment. The system comprises recently developed USV segmentation algorithms with a modification for overlapping vocalizations that results in high accuracy. Using USVCAM, we analyzed USV communications in a conventional home cage, and demonstrated novel vocal interactions in female ICR mice under a resident-intruder paradigm. The extended applicability and usability of USVCAM may facilitate future studies investigating typical and atypical vocal communication and social behaviors, as well as the underlying mechanisms.

15.
Cancer Sci ; 113(9): 3193-3210, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723021

RESUMO

Thyroid cancer is the most common endocrine malignancy. A multitargeted tyrosine kinase inhibitor, lenvatinib, has been used for the treatment of advanced thyroid cancer. To elucidate the mechanism of resistance to lenvatinib in thyroid cancer cells, we established lenvatinib-resistant sublines and analyzed the molecular mechanisms of resistance. Two thyroid cancer cell lines (TPC-1 and FRO) were used, and resistant sublines for lenvatinib (TPC-1/LR, FRO/LR) were established. In TPC-1/LR, the phosphorylation of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), and Akt was enhanced whereas in FRO/LR, the phosphorylation of EGFR and downstream signal transduction molecules was not enhanced. The addition of epidermal growth factor decreased sensitivity to lenvatinib in TPC-1 and FRO. The combination of EGFR inhibitors lapatinib and lenvatinib significantly inhibited the growth of TPC-1/LR in both in vitro and mouse xenograft models. Short-term exposure to lenvatinib enhanced the phosphorylation of EGFR in six thyroid cancer cell lines regardless of their histological origin or driver gene mutations; however, phosphorylation of ERK was enhanced in all cells except TPC-1. A synergistic growth-inhibitory effect was observed in three thyroid cancer cell lines, including intrinsically lenvatinib-resistant cells. The results indicate that signal transduction via the EGFR pathway may be involved in the development of lenvatinib resistance in thyroid cancer cells. The inhibition of the EGFR pathway simultaneously by an EGFR inhibitor may have therapeutic potential for overcoming lenvatinib resistance in thyroid cancer.


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Humanos , Camundongos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo
16.
Front Bioeng Biotechnol ; 10: 799836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372315

RESUMO

Sit-to-stand (STS) transition is one of the most bio-mechanically challenging task necessary for performing activities of daily life. With muscle strength being the most dominant, many co-occurring factors influence how individuals perform STS. This study investigates the STS changes and STS failure caused by strength deficits using the trajectories generated employing an open-loop single shooting optimization framework and musculoskeletal models. The strength deficits were introduced by simultaneously scaling the maximum isometric strength of muscles in steps of 20%. The optimization framework could generate successful STS transitions for models with up to 60% strength deficits. The joint angle kinematics, muscle activation patterns, and the ground reaction forces from the 0% strength deficit model's STS transition match those observed experimentally for a healthy adult in literature. Comparison of different strength deficit STS trajectories shows that the vasti muscle saturation leads to reduced activation of the antagonistic hamstring muscle, and consequently, the gluteus maximus muscle saturation. Subsequently, the observation of reduced hamstring activation and the motion tracking results are used to suggest the vasti muscle weakness to be responsible for STS failure. Finally, the successful STS trajectory of the externally assisted 80% strength deficit model is presented to demonstrate the optimization framework's capability to synthesize assisted STS transition. The trajectory features utilization of external assistance as and when needed to complement strength deficits for successful STS transition. Our results will help plan intervention and design novel STS assistance devices.

17.
Peptides ; 152: 170769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35182689

RESUMO

Angiotensin converting enzyme (ACE) is well known for its role producing the vasoconstrictor angiotensin II and ACE inhibitors are commonly used for treating hypertension and cardiovascular disease. However, ACE has many different substrates besides angiotensin I and plays a role in many different physiologic processes. Here, we discuss the role of ACE in the immune response. Several studies in mice indicate that increased expression of ACE by macrophages or neutrophils enhances the ability of these cells to respond to immune challenges such as infection, neoplasm, Alzheimer's disease, and atherosclerosis. Increased expression of ACE induces increased oxidative metabolism with an increase in cell content of ATP. In contrast, ACE inhibitors have the opposite effect, and in both humans and mice, administration of ACE inhibitors reduces the ability of neutrophils to kill bacteria. Understanding how ACE affects the immune response may provide a means to increase immunity in a variety of chronic conditions now not treated through immune manipulation.


Assuntos
Hipertensão , Peptidil Dipeptidase A , Angiotensina I/metabolismo , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Macrófagos/metabolismo , Camundongos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
18.
J Cancer Res Clin Oncol ; 147(11): 3211-3224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34244855

RESUMO

PURPOSE: Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are widely used for the treatment of advanced estrogen receptor (ER)-positive breast cancer. To develop a treatment strategy for cancers resistant to CDK4/6 inhibitors, here, we established palbociclib-resistant sublines and analyzed their resistance mechanisms. METHODS: Palbociclib-resistant sublines were established from T47D and MCF7 cells. Sensitivity to other drugs was assessed via the WST assay. Altered expression/phosphorylation of proteins related to signal transduction and cell cycle regulation was examined using western blotting. Copy number alterations and mutations in the retinoblastoma (RB1) gene were also analyzed. RESULTS: Although an increase in CDK6 and decrease in retinoblastoma protein (Rb) expression/phosphorylation were commonly observed in the resistant sublines, changes in other cell cycle-related proteins were heterogeneous. Upon extended exposure to palbociclib, the expression/phosphorylation of these proteins became altered, and the long-term removal of palbociclib did not restore the Rb expression/phosphorylation patterns. Consistently a copy number decrease, as well as RB1 mutations were detected. Moreover, although the resistant sublines exhibited cross-resistance to abemaciclib, their response to dinaciclib was the same as that of wild-type cells. Of note, the cell line exhibiting increased mTOR phosphorylation also showed a higher sensitivity to everolimus. However, the sensitivity to chemotherapeutic agents was unchanged in palbociclib-resistant sublines. CONCLUSION: ER-positive breast cancer cells use multiple molecular mechanisms to survive in the presence of palbociclib, suggesting that targeting activated proteins may be an effective strategy to overcome resistance. Additionally, palbociclib monotherapy induces mutations and copy number alterations in the RB1 gene.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/metabolismo , Humanos , Células MCF-7 , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/biossíntese , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/biossíntese , Transdução de Sinais
19.
Sensors (Basel) ; 21(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205706

RESUMO

Since photoplethysmography (PPG) sensors are usually placed on open skin areas, temperature interference can be an issue. Currently, green light is the most widely used in the reflectance PPG for its relatively low artifact susceptibility. However, it has been known that hemoglobin absorption peaks at the blue part of the spectrum. Despite this fact, blue light has received little attention in the PPG field. Blue wavelengths are commonly used in phototherapy. Combining blue light-based treatments with simultaneous blue PPG acquisition could be potentially used in patients monitoring and studying the biological effects of light. Previous studies examining the PPG in blue light compared to other wavelengths employed photodetectors with inherently lower sensitivity to blue, thereby biasing the results. The present study assessed the accuracy of heartbeat intervals (HBIs) estimation from blue and green PPG signals, acquired under baseline and cold temperature conditions. Our PPG system is based on TCS3472 Color Sensor with equal sensitivity to both parts of the light spectrum to ensure unbiased comparison. The accuracy of the HBIs estimates, calculated with five characteristic points (PPG systolic peak, maximum of the first PPG derivative, maximum of the second PPG derivative, minimum of the second PPG derivative, and intersecting tangents) on both PPG signal types, was evaluated based on the electrocardiographic values. The statistical analyses demonstrated that in all cases, the HBIs estimation accuracy of blue PPG was nearly equivalent to the G PPG irrespective of the characteristic point and measurement condition. Therefore, blue PPG can be used for cardiovascular parameter acquisition. This paper is an extension of work originally presented at the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.


Assuntos
Eletrocardiografia , Fotopletismografia , Artefatos , Frequência Cardíaca , Humanos , Processamento de Sinais Assistido por Computador , Temperatura
20.
PLoS One ; 16(6): e0252822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34101751

RESUMO

Sequential treatment with endocrine or chemotherapy is generally used in the treatment of estrogen receptor (ER)-positive recurrent breast cancer. To date, few studies have investigated the effect of long-term endocrine therapy on the response to subsequent chemotherapy in ER-positive breast cancer. We examined whether a preceding endocrine therapy affects the sensitivity to subsequent chemotherapy in ER-positive breast cancer cells. Three ER-positive breast cancer cell lines (T47D, MCF7, BT474) and tamoxifen-resistant sublines (T47D/T, MCF7/T, BT474/T) were analyzed for sensitivity to 5-fluorouracil, paclitaxel, and doxorubicin. The mRNA levels of factors related to drug sensitivity were analyzed by RT-PCR. MCF7/T cells became more sensitive to 5-fluorouracil than wild-type (wt)-MCF7 cells. In addition, the apoptosis induced by 5-fluorouracil was significantly increased in MCF7/T cells. However, no difference in sensitivity to chemotherapeutic agents was observed in T47D/T and BT474/T cells compared with their wt cells. Dihydropyrimidine dehydrogenase (DPYD) mRNA expression was significantly decreased in MCF7/T cells compared with wt-MCF7 cells. The expression of DPYD mRNA was restored with 5-azacytidine treatment in MCF7/T cells. In addition, DPYD 3'-UTR luciferase activity was significantly reduced in MCF7/T cells. These data indicated that the expression of DPYD mRNA was repressed by methylation of the DPYD promoter region and post-transcriptional regulation by miRNA in MCF7/T cells. In the mouse xenograft model, capecitabine significantly reduced the tumor volume in MCF7/T compared with MCF7. The results of this study indicate that endocrine therapy could alter the sensitivity to chemotherapeutic agents in a subset of breast cancers, and 5-fluorouracil may be effective in tamoxifen-resistant breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Capecitabina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...