Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 27(4): 254-265, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094457

RESUMO

Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase initially identified in highly proliferative cells such as thymocytes and fetal liver cells, and it is involved in cell proliferation and survival. VRK2 is also expressed in the brain; however, its molecular function in the central nervous system is mostly unknown. Many genome-wide association studies (GWASs) have reported that VRK2 is a potential candidate molecule for neuropsychiatric diseases such as schizophrenia in humans. However, the pathophysiological relationship between VRK2 and neuropsychiatric disorders has not been fully investigated. In this study, we evaluated vrk2-deficient (vrk2-/- ) zebrafish and found that vrk2-/- female zebrafish showed aggressive behavior and different social preference compared with control (vrk2+/+ ) zebrafish, with low gamma-aminobutyric acid (GABA) content in the brain and high density of neuronal dendrites when compared to vrk2+/+ zebrafish. These findings suggest that female vrk2-/- zebrafish were indeed a model of malbehavior characterized by aggression and social interaction, which can be attributed to the low levels of GABA content in their brain.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas Serina-Treonina Quinases , Peixe-Zebra , Agressão , Animais , Feminino , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/genética , Ácido gama-Aminobutírico
2.
Heliyon ; 6(5): e03947, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32462086

RESUMO

Neuromedin U (NMU) is a bioactive neuropeptide, highly distributed in the gastrointestinal tract and the central nervous system. NMU has various physiological functions related to feeding behavior, energy metabolism, stress responses, circadian rhythmicity and inflammation. Recently, several reports indicate that the central NMU system plays an important role in the reward systems in the brain. However, the underlying molecular mechanisms are not yet fully defined. In this study, we found that some of cocaine-induced c-Fos immunoreactive cells were co-localized with NMU in the nucleus accumbens (NAc), caudate putamen (CPu), and basolateral amygdala (BLA), which are key brain regions associated with the brain reward system, in wild type mice. Whereas, a treatment with cocaine did not influence the kinetics of NMU or NMU receptors mRNA expression in these brain regions, and NMU-knockout mice did not show any higher preference for cocaine compared with their control mice. These results indicate that cocaine has some effect on NMU expressing neurons related to the brain reward system, and this suggests NMU system may have a role on the brain reward systems activated by cocaine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...