Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 33(1): 368-379, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35841417

RESUMO

OBJECTIVE: Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reconstruction (DLR) method, as well as filtered back projection (FBP), hybrid-type iterative reconstruction (IR), and model-based IR methods, has been clinically used. The purpose of this study was to directly compare lung CT number and airway dimension evaluation capabilities of UHR-CT using different scan modes with those of MDCT with different reconstruction methods as investigated in a lung density and airway phantom design recommended by QIBA. MATERIALS AND METHODS: Lung CT number, inner diameter (ID), inner area (IA), and wall thickness (WT) were measured, and mean differences between measured CT number, ID, IA, WT, and standard reference were compared by means of Tukey's HSD test between all UHR-CT data and MDCT reconstructed with FBP as 1.0-mm section thickness. RESULTS: For each reconstruction method, mean differences in lung CT numbers and all airway parameters on 0.5-mm and 1-mm section thickness CTs obtained with SHR and HR modes showed significant differences with those obtained with the NR mode on UHR-CT and MDCT (p < 0.05). Moreover, the mean differences on all UHR-CTs obtained with SHR, HR, or NR modes were significantly different from those of 1.0-mm section thickness MDCTs reconstructed with FBP (p < 0.05). CONCLUSION: Scan modes and reconstruction methods used for UHR-CT were found to significantly affect lung CT number and airway dimension evaluations as did reconstruction methods used for MDCT. KEY POINTS: • Scan and reconstruction methods used for UHR-CT showed significantly higher CT numbers and smaller airway dimension evaluations as did those for MDCT in a QIBA phantom study (p < 0.05). • Mean differences in lung CT number for 0.25-mm, 0.5-mm, and 1.0-mm section thickness CT images obtained with SHR and HR modes were significantly larger than those for CT images at 1.0-mm section thickness obtained with MDCT and reconstructed with FBP (p < 0.05). • Mean differences in inner diameter (ID), inner area (IA), and wall thickness (WT) measured with SHR and HR modes on 0.5- and 1.0-mm section thickness CT images were significantly smaller than those obtained with NR mode on UHR-CT and MDCT (p < 0.05).


Assuntos
Aprendizado Profundo , Humanos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem , Tórax , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos
2.
Radiology ; 302(3): 697-706, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846203

RESUMO

Background Pulmonary MRI with ultrashort echo time (UTE) has been compared with chest CT for nodule detection and classification. However, direct comparisons of these methods' capabilities for Lung CT Screening Reporting and Data System (Lung-RADS) evaluation remain lacking. Purpose To compare the capabilities of pulmonary MRI with UTE with those of standard- or low-dose thin-section CT for Lung-RADS classification. Materials and Methods In this prospective study, standard- and low-dose chest CT (270 mA and 60 mA, respectively) and MRI with UTE were used to examine consecutive participants enrolled between January 2017 and December 2020 who met American College of Radiology Appropriateness Criteria for lung cancer screening with low-dose CT. Probability of nodule presence was assessed for all methods with a five-point visual scoring system by two board-certified radiologists. All nodules were then evaluated in terms of their Lung-RADS classification using each method. To compare nodule detection capability of the three methods, consensus for performances was rated by using jackknife free-response receiver operating characteristic analysis, and sensitivity was compared by means of the McNemar test. In addition, weighted κ statistics were used to determine the agreement between Lung-RADS classification obtained with each method and the reference standard generated from standard-dose CT evaluated by two radiologists who were not included in the image analysis session. Results A total of 205 participants (mean age: 64 years ± 7 [standard deviation], 106 men) with 1073 nodules were enrolled. Figure of merit (FOM) (P < .001) had significant differences among three modalities (standard-dose CT: FOM = 0.91, low-dose CT: FOM = 0.89, pulmonary MRI with UTE: FOM = 0.94), with no evidence of false-positive findings in participants with all modalities (P > .05). Agreements for Lung-RADS classification between all modalities and the reference standard were almost perfect (standard-dose CT: κ = 0.82, P < .001; low-dose CT: κ = 0.82, P < .001; pulmonary MRI with UTE: κ = 0.82, P < .001). Conclusion In a lung cancer screening population, ultrashort echo time pulmonary MRI was comparable to standard- or low-dose CT for Lung CT Screening Reporting and Data System classification. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
AJR Am J Roentgenol ; 218(5): 899-908, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877872

RESUMO

BACKGROUND. Whole-body MRI and FDG PET/MRI have shown encouraging results for staging of thoracic malignancy but are poorly studied for staging of small cell lung cancer (SCLC). OBJECTIVE. The purpose of our study was to compare the performance of conventional staging tests, FDG PET/CT, whole-body MRI, and FDG PET/MRI for staging of SCLC. METHODS. This prospective study included 98 patients (64 men, 34 women; median age, 74 years) with SCLC who underwent conventional staging tests (brain MRI; neck, chest, and abdominopelvic CT; and bone scintigraphy), FDG PET/CT, and whole-body MRI within 2 weeks before treatment; coregistered FDG PET/MRI was generated. Two nuclear medicine physicians independently reviewed conventional tests and FDG PET/CT examinations in separate sessions, and two chest radiologists independently reviewed whole-body MRI and FDG PET/MRI examinations in separate sessions. Readers assessed T, N, and M categories; TNM stage; and Veterans Administration Lung Cancer Study Group (VALSG) stage. Reader pairs subsequently reached consensus. Stages determined clinically during tumor board sessions served as the reference standard. RESULTS. Accuracy for T category was higher (p < .05) for whole-body MRI (94.9%) and FDG PET/MRI (94.9%) than for FDG PET/CT (85.7%). Accuracy for N category was higher (p < .05) for whole-body MRI (84.7%), FDG PET/MRI (83.7%), and FDG PET/CT (81.6%) than for conventional staging tests (75.5%). Accuracy for M category was higher (p < .05) for whole-body MRI (94.9%), FDG PET/MRI (94.9%), and FDG PET/CT (94.9%) than for conventional staging tests (84.7%). Accuracy for TNM stage was higher (p < .05) for whole-body MRI (88.8%) and FDG PET/MRI (86.7%) than for FDG PET/CT (77.6%) and conventional staging tests (72.4%). Accuracy for VALSG stage was higher (p < .05) for whole-body MRI (95.9%), FDG PET/MRI (95.9%), and FDG PET/CT (98.0%) than for conventional staging tests (82.7%). Interobserver agreement, expressed as kappa coefficients, ranged from 0.81 to 0.94 across imaging tests and staging endpoints. CONCLUSION. FDG PET/CT, whole-body MRI, and coregistered FDG PET/MRI outperformed conventional tests for various staging endpoints in patients with SCLC. Whole-body MRI and FDG PET/MRI outperformed FDG PET/CT for T category and thus TNM stage, indicating the utility of MRI for assessing extent of local invasion in SCLC. CLINICAL IMPACT. Incorporation of either MRI approach may improve initial staging evaluation in SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Idoso , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Estudos Prospectivos , Compostos Radiofarmacêuticos , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/patologia , Imagem Corporal Total/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...