Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(28): 16283-16291, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32611810

RESUMO

The difficulty of achieving robust functional expression of insect nicotinic acetylcholine receptors (nAChRs) has hampered our understanding of these important molecular targets of globally deployed neonicotinoid insecticides at a time when concerns have grown regarding the toxicity of this chemotype to insect pollinators. We show that thioredoxin-related transmembrane protein 3 (TMX3) is essential to enable robust expression in Xenopus laevis oocytes of honeybee (Apis mellifera) and bumblebee (Bombus terrestris) as well as fruit fly (Drosophila melanogaster) nAChR heteromers targeted by neonicotinoids and not hitherto robustly expressed. This has enabled the characterization of picomolar target site actions of neonicotinoids, findings important in understanding their toxicity.


Assuntos
Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Abelhas/metabolismo , Relação Dose-Resposta a Droga , Drosophila melanogaster/metabolismo , Proteínas de Insetos/agonistas , Proteínas de Insetos/genética , Oócitos/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Xenopus laevis
2.
Sci Rep ; 10(1): 7529, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371996

RESUMO

Neonicotinoids selectively modulate insect nicotinic acetylcholine receptors (insect nAChRs). Studies have shown that serine with ability to form a hydrogen bond in loop C of some insect nAChR α subunits and glutamate with a negative charge at the corresponding position in vertebrate nAChRs may contribute to enhancing and reducing the neonicotinoid actions, respectively. However, there is no clear evidence what loop C properties underpin the target site actions of neonicotinoids. Thus, we have investigated the effects of S221A and S221Q mutations in loop C of the Drosophila melanogaster Dα1 subunit on the agonist activity of imidacloprid and thiacloprid for Dα1/chicken ß2 nAChRs expressed in Xenopus laevis oocytes. The S221A mutation hardly affected either the affinity or efficacy for ACh and imidacloprid, whereas it only slightly reduced the efficacy for thiacloprid on the nAChRs with a higher composition ratio of ß2 to Dα1 subunits. The S221Q mutation markedly reduced the efficacy of the neonicotinoids for the nAChRs with a higher composition of the ß2 subunit lacking basic residues critical for binding neonicotinoids. Hence, we predict the possibility of enhanced neonicotinoid resistance in pest insect species by a mutation of the serine when it occurs in the R81T resistant populations lacking the basic residue in loop D of the ß1 subunit.


Assuntos
Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Animais , Galinhas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Feminino , Ácido Glutâmico/química , Ligação de Hidrogênio , Inseticidas , Mutação , Neonicotinoides/química , Nitrocompostos , Oócitos , Domínios Proteicos , Tiazinas , Xenopus laevis
3.
Pestic Biochem Physiol ; 166: 104545, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448414

RESUMO

Neonicotinoids targeting insect nicotinic acetylcholine (ACh) receptors (insect nAChRs) are used for crop protection, but there is a concern about adverse effects on pollinators such as honeybees (Apis mellifera). Thus, we investigated the agonist actions of neonicotinoids (imidacloprid, thiacloprid and clothianidin) on A. mellifera α1 (Amα1)/chicken ß2 hybrid nAChRs in Xenopus laevis oocytes according to the subunit stoichiometry of (Amα1)3(ß2)2 and (Amα1)2(ß2)3 using voltage-clamp electrophysiology. ACh activated (Amα1)3(ß2)2 and (Amα1)2(ß2)3 nAChRs with similar current amplitude. We investigated the agonist activity of imidacloprid, thiacloprid and clothianidin for the two hybrid nAChRs and found that: 1) imidacloprid showed higher affinity than clothianidin, whereas clothianidin showed higher efficacy than imidacloprid for the nAChRs; 2) Thiacloprid showed the highest agonist affinity and the lowest efficacy for the nAChRs. The Amα1/ß2 subunit ratio influenced the efficacy of imidacloprid and thiacloprid, but hardly affected that of clothianidin. Hydrogen bond formation by the NH group in clothianidin with the main chain carbonyl of the loop B may account, at least in part, for the unique agonist actions of clothianidin on the hybrid nAChRs tested.


Assuntos
Galinhas , Receptores Nicotínicos , Animais , Abelhas , Imidazóis , Neonicotinoides , Oócitos , Xenopus laevis
4.
Pestic Biochem Physiol ; 151: 47-52, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704712

RESUMO

Neonicotinoid insecticides interact with the orthosteric sites of nicotinic acetylcholine receptors (nAChRs) formed at the interfaces of (a) two adjacent α subunits and (b) α and non-α subunits. However, little is known of the detailed contributions of these two orthosteric sites to neonicotinoid actions. We therefore applied voltage-clamp electrophysiology to the Dα1/chicken ß2 hybrid nAChR expressed in Xenopus laevis oocytes to explore the agonist actions of imidacloprid and thiacloprid on wild type receptors and following binding site mutations. First, we studied the S221E mutation in loop C of the ACh binding site of the Dα1 subunit. Secondly, we explored the impact of combining this mutation in loop C with others in the loop D-E-G triangle (R57S; E78K; K140T; S221E). The S221E loop C mutation alone reduced the affinity of the neonicotinoids tested, while hardly affecting the concentration-response curve for acetylcholine. Addition of the three R57S; E78K; K140T mutations in the loop D-E-G triangle led to a further reduction in neonicotinoid sensitivity, suggesting that all four binding site loops (C, D, E, G) in the Dα1 subunit, which are located upstream of loop B in the N-terminal, extracellular domain, contribute to the selective actions of neonicotinoid insecticides.


Assuntos
Neonicotinoides/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Galinhas , Drosophila , Eletrofisiologia , Feminino , Mutação , Nitrocompostos/metabolismo , Oócitos/metabolismo , Receptores Nicotínicos/genética , Tiazinas/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...