Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 79(2): 495-510, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31312870

RESUMO

Many sponges host abundant and active microbial communities that may play a role in the uptake of dissolved organic matter (DOM) by the sponge holobiont, although the mechanism of DOM uptake and metabolism is uncertain. Bulk and compound-specific isotopic analysis of whole sponge, isolated sponge cells, and isolated symbiotic microbial cells of the shallow water tropical Pacific sponge Mycale grandis were used to elucidate the trophic relationships between the host sponge and its associated microbial community. δ15N and δ13C values of amino acids in M. grandis isolated sponge cells are not different from those of its bacterial symbionts. Consequently, there is no difference in trophic position of the sponge and its symbiotic microbes indicating that M. grandis sponge cell isolates do not display amino acid isotopic characteristics typical of metazoan feeding. Furthermore, both the isolated microbial and sponge cell fractions were characterized by a similarly high ΣV value-a measure of bacterial-re-synthesis of organic matter calculated from the sum of variance among individual δ15N values of trophic amino acids. These high ΣV values observed in the sponge suggest that M. grandis is not reliant on translocated photosynthate from photosymbionts or feeding on water column picoplankton, but obtains nutrition through the uptake of amino acids of bacterial origin. Our results suggest that direct assimilation of bacterially synthesized amino acids from its symbionts, either in a manner similar to translocation observed in the coral holobiont or through phagotrophic feeding, is an important if not primary pathway of amino acid acquisition for M. grandis.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Microbiota/fisiologia , Poríferos/metabolismo , Poríferos/microbiologia , Aminoácidos/química , Animais , Isótopos/análise , Nutrientes/metabolismo
2.
Front Microbiol ; 10: 2233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649625

RESUMO

Herpesviruses undergo life-long latent infection which can be life-threatening in the immunocompromised. Models of latency and reactivation of human cytomegalovirus (HCMV) include primary myeloid cells, cells known to be important for HCMV latent carriage and reactivation in vivo. However, primary cells are limited in availability, and difficult to culture and to genetically modify; all of which have hampered our ability to fully understand virus/host interactions of this persistent human pathogen. We have now used iPSCs to develop a model cell system to study HCMV latency and reactivation in different cell types after their differentiation down the myeloid lineage. Our results show that iPSCs can effectively mimic HCMV latency/reactivation in primary myeloid cells, allowing molecular interrogations of the viral latent/lytic switch. This model may also be suitable for analysis of other viruses, such as HIV and Zika, which also infect cells of the myeloid lineage.

3.
ISME J ; 7(11): 2192-205, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23804152

RESUMO

Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2(-)) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2(-) oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2(-)-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. (15)NO2(-) oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. (15)NO2(-) oxidation rates were highest where dissolved oxygen concentrations were <5 µM, where NO2(-) accumulated, and when nitrate (NO3(-)) reductase genes were expressed; they are likely sustained by NO3(-) reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r(2)=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, (15)NO2(-) oxidation rates were decoupled from (15)NH4(+) oxidation rates, but correlated with Nitrospina (r(2)=0.246, P<0.05) and NO2(-) concentrations (r(2)=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2(-) oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean.


Assuntos
Bactérias/metabolismo , Nitritos/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Amônia/metabolismo , Bactérias/genética , Biodiversidade , Dados de Sequência Molecular , Nitrogênio/metabolismo , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Oceano Pacífico , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...