Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alcohol Clin Exp Res ; 39(12): 2302-12, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26577834

RESUMO

BACKGROUND: The presence of intracellular pH (pHi ) regulators, including Na(+) -H(+) exchanger (NHE), Na(+) -HCO3- co-transporter (NBC), Cl(-) /OH(-) exchanger (CHE), and Cl(-) /HCO3- exchanger (AE), have been confirmed in many mammalian cells. Alcohol consumption is associated with increased risk of cardiovascular disorder. The aims of the study were to identify the possible transmembrane pHi regulators and to explore the effects of ethanol (EtOH) (10 to 300 mM) on the resting pHi and pHi regulators in human aorta smooth muscle cells (HASMCs). METHODS: HASMCs were obtained from patients undergoing heart transplant. The pHi was measured by microspectrofluorimetry with the pH-sensitive dye, BCECF-AM. RESULTS: The following results are obtained. (i) In cultured HASMCs, the resting pHi was 7.19 ± 0.04 and 7.13 ± 0.02 for HEPES- and CO2 /HCO3--buffered solution, respectively. (ii) Two different Na(+) -dependent acid-equivalent extruders, including NHE and Na(+) -coupled HCO3- transporter, functionally coexisted. (iii) Two different Cl(-) -dependent acid loaders (CHE and AE) were functionally identified. (iv) EtOH induced a biphasic, concentration-dependent change in resting pHi (+0.25 pH unit at 100 mM but only +0.05 pH unit at 300 mM) in bicarbonate-buffered solution, while caused a concentration-dependent decrease in resting pHi (-0.06 pH unit at 300 mM) in HEPES-buffered solution. (v) The effect of EtOH on NHE activity was also biphasic: increase of 40% at lower concentration of 10 mM, followed by decrease of 30% at higher concentration of 300 mM. (vi) The increase in Na(+) -coupled HCO3- transporter activity by EtOH was concentration dependent. (vii) The effect of EtOH on CHE and AE activities was both biphasic: increase of ~25% at 30 mM, followed by decrease of 10 to 25% at 100 mM, and finally increase of 15 to 20% at 300 mM. CONCLUSIONS: This study demonstrated that 2 acid extruders and 2 acid loaders coexisted functionally in HASMCs and that EtOH induced a biphasic, concentration-dependent change in resting pHi by altering the activity of the 2 acid extruders, NHE and Na(+) -coupled HCO3- transporter, and the 2 acid loaders, CHE and AE.


Assuntos
Aorta/fisiologia , Etanol/farmacologia , Membranas Intracelulares/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Miócitos de Músculo Liso/fisiologia , Aorta/efeitos dos fármacos , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Membranas Intracelulares/efeitos dos fármacos , Masculino , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/fisiologia
2.
PLoS One ; 9(2): e90273, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587308

RESUMO

Homeostasis of the intracellular pH (pHi) in mammalian cells plays a pivotal role in maintaining cell function. Thus far, the housekeeping Na(+)-H(+) exchanger (NHE) and the Na(+)-HCO3(-) co-transporter (NBC) have been confirmed in many mammalian cells as major acid extruders. However, the role of acid-extruding regulators in human renal artery smooth muscle cells (HRASMCs) remains unclear. It has been demonstrated that lipopolysaccharide (LPS)-induced vascular occlusion is associated with the apoptosis, activating calpain and increased [Ca(2+)]i that are related to NHE1 activity in endothelia cells. This study determines the acid-extruding mechanisms and the effect of LPS on the resting pHi and active acid extruders in cultured HRASMCs. The mechanism of pHi recovery from intracellular acidosis (induced by NH4Cl-prepulse) is determined using BCECF-fluorescence in cultured HRASMCs. It is seen that (a) the resting pHi is 7.19 ± 0.03 and 7.10 ± 0.02 for HEPES- and CO2/HCO3(-)- buffered solution, respectively; (b) apart from the housekeeping NHE1, another Na(+)-coupled HCO3(-) transporter i.e. NBC, functionally co-exists to achieve acid-equivalent extrusion; (c) three different isoforms of NBC: NBCn1 (SLC4A7; electroneutral), NBCe1 (SLC4A4; electrogenic) and NBCe2 (SLC4A5), are detected in protein/mRNA level; and (d) pHi and NHE protein expression/activity are significantly increased by LPS, in both a dose- and time- dependent manner, but NBCs protein expression is not. In conclusion, it is demonstrated, for the first time, that four pHi acid-extruding regulators: NHE1, NBCn1, NBCe1 and NBCe2, co-exist in cultured HRASMCs. LPS also increases cellular growth, pHi and NHE in a dose- and time-dependent manner.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Lipopolissacarídeos/farmacologia , Miócitos de Músculo Liso/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Equilíbrio Ácido-Base/imunologia , Idoso , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Feminino , Expressão Gênica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Artéria Renal/patologia , Simportadores de Sódio-Bicarbonato/metabolismo , Trocador 1 de Sódio-Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...