Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(3): 615-628, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38189525

RESUMO

Excessive release of neutrophil extracellular traps (NETs) has been reported in various human pathologies, including COVID-19 patients. Elevated NET levels serve as a biomarker, indicating increased coagulopathy and immunothrombosis risks in these patients. Traditional immunoassays employed to quantify NET release focus on bulk measurements of released chromatin in simplified microenvironments. In this study, we fabricated a novel NET-array device to quantify NET release from primary human neutrophils with single-cell resolution in the presence of the motile bacteria Pseudomonas aeruginosa PAO1 and inflammatory mediators. The device was engineered to have wide chambers and constricted loops to measure NET release in variably confined spaces. Our open NET-array device enabled immunofluorescent labeling of citrullinated histone H3, a NET release marker. We took time-lapse images of primary healthy human neutrophils releasing NETs in clinically relevant infection and inflammation-rich microenvironments. We then developed a computer-vision-based image processing method to automate the quantification of individual NETs. We showed a significant increase in NET release to Pseudomonas aeruginosa PAO1 when challenged with inflammatory mediators tumor necrosis factor-α [20 ng mL-1] and interleukin-6 [50 ng mL-1], but not leukotriene B4 [20 nM], compared to the infection alone. We also quantified the temporal dynamics of NET release and differences in the relative areas of NETs, showing a high percentage of variable size NET release with combined PAO1 - inflammatory mediator treatment, in the device chambers. Importantly, we demonstrated reduced NET release in the confined loops of our combined infection-inflammation microsystem. Ultimately, our NET-array device stands as a valuable tool, facilitating experiments that enhance our comprehension of the spatiotemporal dynamics of NET release in response to infection within a defined microenvironment. In the future, our system can be used for high throughput and cost-effective screening of novel immunotherapies on human neutrophils in view of the importance of fine-tuning NET release in controlling pathological neutrophil-driven inflammation.


Assuntos
Armadilhas Extracelulares , Humanos , Neutrófilos/microbiologia , Histonas , Inflamação , Mediadores da Inflamação
2.
J Funct Biomater ; 14(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103307

RESUMO

During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior.

3.
Acta Biomater ; 78: 165-177, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059799

RESUMO

The repair of nerve gap injuries longer than 3 cm is limited by the need to sacrifice donor tissue and the morbidity associated with the autograft gold standard, while decellularized grafts and biodegradable conduits are effective only in short nerve defects. The advantage of isogenic nerve implants seems to be the release of various growth factors by the denervated Schwann cells. We evaluated the effect of vascular endothelial growth factor, neurotrophins, and pleiotrophin (PTN) supplementation of multi-luminal conduits, in the repair of 3 and 4 cm nerve gaps in the rabbit peroneal nerve. In vitro screening revealed a synergistic regenerative effect of PTN with glial-derived neurotrophic factor (GDNF) in promoting sensory axon density, and motor axonal growth from spinal cord explants. In vivo, pleiotrophins were able to support nerve regrowth across a 3 cm gap. In the 4 cm lesions, PTN-GDNF had a modest effect in the number of axons distal to the implant, while increasing the mean axon diameter (1 ±â€¯0.4; p ≤ 0.001) over PTN or GDNF alone (0.80 ±â€¯0.2, 0.84 ±â€¯0.5; respectively). Some regenerated axons reinnervated muscle targets as indicated by neuromuscular junction staining. However, many were wrapped in Remak bundles, suggesting a delay in axonal sorting, explaining the limited electrophysiological function of the reinnervated muscle, and the modest recovery in toe spreading in the PTN-GDNF repaired animals. These results support the use of synergistic neurotrophic/pleiotrophic growth factors in long gap repair and underscore the need for re-myelination strategies distal to the injury site. STATEMENT OF SIGNIFICANCE: Nerve injuries due to trauma or tumor resection often result in long gaps that are challenging to repair. The best clinical option demands the use of autologous grafts that are associated with serious side effects. Bioengineered nerves are considered a good alternative, particularly if supplemented with growth factors, but current options do not match the regenerative capacity of autografts. This study revealed the synergistic effect of neurotrophins and pleiotrophins designed to achieve a broad cellular regenerative effect, and that GDNF-PTN are able to mediated axonal growth and partial functional recovery in a 4 cm nerve gap injury, albeit delays in remyelination. This report underscores the need for defining an optimal growth factor support for biosynthetic nerve implants.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/farmacologia , Citocinas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neuregulina-1/farmacologia , Nervo Fibular/lesões , Nervo Fibular/fisiopatologia , Animais , Axônios/efeitos dos fármacos , Sinergismo Farmacológico , Potenciais Evocados/efeitos dos fármacos , Camundongos , Atividade Motora/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/inervação , Nervo Fibular/efeitos dos fármacos , Nervo Fibular/patologia , Coelhos , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...