Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(3): 4421-4439, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38549334

RESUMO

Optical coherence tomography (OCT) has been widely used for the diagnosis of dental demineralization. Most methods rely on extracting optical features from OCT echoes for evaluation or diagnosis. However, due to the diversity of biological samples and the complexity of tissues, the separability and robustness of extracted optical features are inadequate, resulting in a low diagnostic efficiency. Given the widespread utilization of entropy analysis in examining signals from biological tissues, we introduce a dental demineralization diagnosis method using OCT echoes, employing multiscale entropy analysis. Three multiscale entropy analysis methods were used to extract features from the OCT one-dimensional echo signal of normal and demineralized teeth, and a probabilistic neural network (PNN) was used for dental demineralization diagnosis. By comparing diagnostic efficiency, diagnostic speed, and parameter optimization dependency, the multiscale dispersion entropy-PNN (MDE-PNN) method was found to have comprehensive advantages in dental demineralization diagnosis with a diagnostic efficiency of 0.9397. Compared with optical feature-based dental demineralization diagnosis methods, the entropy features-based analysis had better feature separability and higher diagnostic efficiency, and showed its potential in dental demineralization diagnosis with OCT.


Assuntos
Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Entropia
2.
Appl Spectrosc ; 78(4): 398-402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304933

RESUMO

We report on the hard-target reflection spectroscopy of carbon monoxide (CO) gas based on the technique of infrared tunable diode laser absorption spectroscopy aiming at developing a low-cost yet sensitive sensor for the early detection of spontaneous coal combustion. A narrow-band distributed feedback laser emitting around 2333.7 nm is used to monitor CO gas molecules contained in a 5 cm gas cell. The light diffusely backscattered from the surface of a lump of coal placed at the end of a 50 cm light path is detected with a photodiode in the coaxial transmitter/receiver setup. From the variation of the detected signal profile with the CO partial pressure in the cell, the detection limit of the current system is estimated to be about 30 parts per million per meter (ppm·m), which meets the sensitivity required for monitoring the self-heating of coal in mines, silos, or stockpiles.

3.
J Xray Sci Technol ; 31(5): 951-964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393486

RESUMO

BACKGROUND: The soft X-ray projection microscope has been developed for high resolution imaging of hydrated bio-specimens. Image blurring due to X-ray diffraction can be corrected by an iteration procedure. The correction is not efficient enough for all images, especially for low contrast chromosome images. OBJECTIVE: The purpose of this study is to improve X-ray imaging techniques using a finer pinhole and reducing capture time, as well as to improve image correction methods. A method of specimen staining prior to the imaging was tested in order to capture images with high contrasts. The efficiency of the iteration procedure and its combined version with an image enhancement method was also assessed. METHODS: In image correction, we used the iteration procedure and its combined version with an image enhancement technique. To capture higher contrast images, we stained chromosome specimens with the Platinum blue (Pt-blue) prior to the imaging. RESULTS: The iteration procedure combined with image enhancement corrected the chromosome images with 329 or lower magnification effectively. Using the Pt-blue staining for the chromosome, images with high contrast have been captured and successfully corrected. CONCLUSIONS: The image enhancement technique combining contrast enhancement and noise removal together was effective to obtain higher contrast images. As a result, the chromosome images with 329 or lower times magnification were corrected effectively. With Pt-blue staining, chromosome images with contrasts of 2.5 times higher than unstained case could be captured and corrected by the iteration procedure.


Assuntos
Algoritmos , Microscopia , Raios X , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
4.
Sci Rep ; 13(1): 4086, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906725

RESUMO

Visualization of dust flow and wind dynamics near the ground surface are essential for understanding the mixing and interaction between geosphere and atmosphere near the surface. Knowing the temporal dust flow is beneficial in dealing with air pollution and health issues. Dust flows near the ground surface are difficult to monitor because of their small temporal and spatial scale. In this study, we propose a low-coherence Doppler lidar (LCDL) for measuring dust flow near the ground with high temporal and spatial resolutions of 5 ms and 1 m, respectively. We demonstrate the performance of LCDL in laboratory experiments using flour and calcium carbonate particles released into the wind tunnel. LCDL experiment results show a good agreement with anemometer measurement in wind speeds ranging from 0 to 5 m/s. The LCDL technique can reveal dust's speed distribution, which is affected by mass and particle size. As a result, different speed distribution profiles can be used to determine dust type. The simulation results of dust flow coincide well with the experimental results.

5.
Sci Rep ; 12(1): 8824, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614163

RESUMO

The propagation methods of a non-diffractive beam (NDB) for optical sensing in scattering media have been extensively studied. However, those methods can realize the high resolution and long depth of focus in the viewpoint of microscopic imaging. In this study, we focus on macroscopic sensing in living tissues with a depth of a few tens centimeters. An experimental approach for generating adequate NDB in dense scattering media based on the linear relationship between propagation distance and transport mean free path is reported. For annular beams with different diameters, the same changes of the center intensity ratio of NDB are obtained from the experiment results. They are discussed with theoretical analysis. As a result, the maximum center intensity ratio of the adequate generated NDB can be estimated at arbitrary propagation distance in the dense scattering media.


Assuntos
Modelos Teóricos
6.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35458924

RESUMO

Chlorophyll-a measurement is important in algal growth and water quality monitoring in natural waters. A portable pulsed LED fluorescence lidar system based on the preliminary algal organic matter and pigments excitation-emission matrix (EEM) of commercialized AZTEC Spirulina powder at varying concentrations was developed. Fluorescence peaks from EEMs showed increasing intensity as the Spirulina concentration increases. Using this information, an LED fluorescence lidar with a wavelength of 385 nm, pulse width of 10 ns, and repetition frequency of 500 kHz was constructed for chlorophyll detection at 680 nm. Turbidity measurements were also conducted at 700 nm emission wavelength at the same excitation wavelength. Range-resolved fluorescence lidar signals from the portable pulsed LED fluorescence lidar system are highly correlated with the standard methods such as optical density at 680 nm (R2 = 0.87), EEM fluorescence chlorophyll-a pigment at 680 nm (R2 = 0.89), and corrected chlorophyll-a concentration (R2 =0.92). The F680/F700 lidar ratio was measured to provide a linear relationship of chlorophyll-a and turbidity in waters. The F680/F700 measurement showed strong correlations with Spirulina concentration (R2 = 0.94), absorbance at 680 nm (R2 = 0.84), EEM chlorophyll-a pigment at 680 nm (R2 = 0.83), and corrected chlorophyll-a concentration (R2 = 0.86). Results revealed that this new technique of chlorophyll-a measurement can be used as an alternative to other standard methods in algal growth monitoring.


Assuntos
Spirulina , Clorofila , Clorofila A , Fluorescência , Pigmentação , Espectrometria de Fluorescência/métodos
7.
Appl Opt ; 60(13): 3689-3698, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983301

RESUMO

In recent years, with the development of precise lathe-cutting equipment, special shaped contact lenses (CL) have been crafted. However, while it is possible to manufacture such a lens, its shape evaluation has not been well-established. We conducted a basic optical experiment using special lenses to measure a spherical lens and nonspherical mold. As the measurement sample, a metal ball, special CL, and a toric-shaped mold were adopted. In order to accurately measure those real shapes, we proposed an algorithm in which the probe light is vertically incident to the sample surface within a numerical aperture of the optical probe. For this algorithm, we developed the specialized time-domain optical coherence tomography (TD-OCT), which was designed to conduct circular scanning while maintaining vertical incidence by driving a two-axis (vertical and horizontal) micro-electromechanical system mirror with a phase difference of 90°. The shape, thickness distribution, and curvature radii of both front and back surfaces of a CL were estimated with this OCT signal analysis and sphere fitting. The shape and curvature radius were evaluated by using the simulated data under the same experimental conditions. They were sufficiently accurate based on the resolution of this OCT. Also, a toric-shaped mold was evaluated by comparing the relationship between each coordinate and intensity of the interference signal. As a result, it is confirmed that the experimental result and the simulated matched well.

8.
Appl Opt ; 59(28): 9051-9059, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104595

RESUMO

The optical measurement algorithm for the real front and back surfaces of contact lenses from their center to periphery accurately and simultaneously is proposed. It is an algorithm that makes light incident vertically along the curved surfaces of contact lenses under the condition that the difference of curvature radii between the front and back surfaces is small enough within the NA of the optical probe. For this purpose, we adopted time-domain optical coherence tomography (OCT) with translation and rotation mechanisms. The shape, thickness distribution, and curvature radii of both surfaces were estimated with OCT signal analysis and circular approximation. The measured results were compared with the designed values and the measured data from a conventional shape measurement device. The curved shape of both surfaces and thickness were well matched with the designed values from lens center to periphery. In a curvature radius of the front surface, there was a proportional bias with a limit of agreement of -0.77% to -2.09%, and the correlation coefficient was 0.57. On the back surface, there was no systematic bias, and minimal detectable change was 0.178 mm, in a range of 95% confidential interval. The proposed algorithm well visualized the real shape and optical characteristics of the contact lens with enough accuracy to the design.

9.
Appl Opt ; 59(26): 8014-8022, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976477

RESUMO

Aerosol optical properties are measured near the surface level using sampling instruments and a near-horizontal lidar. The values of the aerosol extinction coefficient inside the instruments are derived from nephelometer and aethalometer data, while the ambient values are measured from the lidar. The information on aerosol size distribution from optical particle counters is used to simulate extinction coefficients using the Mie scattering theory, with corrections on the humidity growth of hygroscopic particles. By applying this method to the continuous data obtained from November to December 2018 at Chiba, Japan, we elucidate the temporal variations of near-surface aerosol properties, including the complex refractive index, single scattering albedo, and Angstrom exponent. The results indicate how aerosol particles change their properties between the dry, instrumental conditions and relatively humid setting of the ambient atmosphere.

10.
Sensors (Basel) ; 19(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30700059

RESUMO

The creation of a compact and easy-to-use atmospheric lidar has been the aim of researchers for a long time. Micro Pulse Lidars (MPL) and commercialized ceilometers were designed for such purposes. Laser Diodes (LD) and Diode-Pumped Solid State (DPSS) Laser technology has evolved, making lidar system more compact; however, their vulnerability to static electricity and fluctuation of electrical power prevented the growth of atmospheric lidar technology as a system suited to all kinds of users. In this study, a mini lidar with a Light Emitting Diode (LED) -based light source was designed and developed. As LED lamp modules do not need a heat sink or fan, they are resilient and can emit light for long periods with constant intensity. They also offer ease of handling for non-professionals. On the other hand, a LED lamp module has a large divergence, when compared to laser beams. A prototype LED mini lidar was thus developed, with focus on transmitting power optimization and optical design. This low-cost lidar system is not only compact, but also offers near-range measurement applications. It visualizes rapid activities of small air cells in a close range (surface atmosphere), and can verify and predict the condition of the surface atmosphere. This paper summarizes the principle, design, practical use and applications of the LED mini-lidar.

11.
J Xray Sci Technol ; 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28269813

RESUMO

Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

12.
Appl Opt ; 51(7): 898-904, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22410893

RESUMO

A high precision, polarization-independent optical circulator was developed for high accuracy Faraday depolarization lidar. Glan laser prisms and other novel optics were utilized in the circulator optics, resulting in a high extinction ratio of polarization of >30 dB. High accuracy is needed to detect a small rotation angle in the polarization plane of the propagating beam. It is generated by the Faraday effect due to the lightning discharge. The developed circulator delivered high performance of insertion loss and isolation as laser transmitter and echo receiver in the inline lidar optics.

13.
Appl Opt ; 44(34): 7407-13, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16353813

RESUMO

An in-line type compact micropulse lidar (MPL) with an annular beam was developed for low-altitude cloud measurement. An optical circulator and a couple of axicon prisms for an annular beam were installed on the lidar optics. The advantage of using the in-line MPL is its ability to obtain a near-range measurement with a narrow field of view of 0.1 mrad and to obtain a depolarization measurement of the orthogonally polarized echoes caused by ice crystals of a low-altitude cloud. The total insertion loss of the lidar optics was 3 dB. Detectors such as avalance photodiode detectors can be operated in an analog mode near the breakdown voltage because of the high isolation of the optical circulator. The ideal lidar echo variation from the nearest distance was verified by measuring the mountain echoes at various distances. The depolarization measurement of a low-altitude ice cloud was also demonstrated.

14.
Appl Opt ; 44(34): 7467-74, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16353820

RESUMO

An in-line type micropulse lidar (MPL) with an annular beam was designed and the transmitting and receiving characteristics were analyzed. Because the in-line MPL utilizes a common telescope for a transmitter and a receiver and the annular beam always overlaps with the receiver's field of view (FOV), it can measure near-range lidar echoes with a narrow FOV. The transmitting annular beam changes its shape to a nearly nondiffractive beam through propagation. It improves the spatial resolution of the lidar observation. The receiving characteristics showed the ideal lidar echo variation, which was inversely proportional to the square of the distance the beam propagated, even if it was in the near range.

15.
Appl Opt ; 42(19): 3795-9, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12868817

RESUMO

A new scanning mechanism for changing long optical paths is proposed. This mechanism consists of corner reflectors arranged equally upon a disk and an outer mirror. Rotating the 120-mm disk causes a long-optical-path change in each reflector with a near linearity of more than 40 mm. An optical coherence tomography system is described that confirms the usefulness of the proposed mechanism. Its operating characteristics and accuracy are evaluated by analysis and experiment. The deviation of the optical-path change is less than 1.52% at a reflector rotation angle of +/-10 degrees. A high-speed lock-in amplifier is utilized for fundamental measurements of glass samples.

16.
Appl Opt ; 41(19): 3900-5, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12099598

RESUMO

The application of an optical circulator is demonstrated for an in-line-type lidar. The lidar's transmitter and receiver are installed in a telescope. The optical circulator of interest here can separate the transmitting laser beam and the echo lights on the same optical axis. It can also divide the echo lights simultaneously into orthogonally polarized components. An insertion loss of 2.2 dB and isolation of >60 dB for the developed optical circulator are obtained in a laser-transmitting situation. This optical circulator makes it possible to measure the polarization ratio caused by cloud phases with a narrow field of view in an in-line-type lidar operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...