Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(41): 26753-26762, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36320856

RESUMO

The synthesis and characterization of aramid composites reinforced with graphene platelets are reported. Hydroxy-functionalised graphene platelets were modified with two sol-gel binders (aminopropyl- or aminophenyl-trialkoxysilanes) and then chemically linked with aramid chains. The effect of the two sol-gel binders on the physiochemical and mechanical properties was evaluated. Chemical changes during the sol-gel reaction and subsequent amidation process in the nano-composite preparation were evaluated by the XPS and FTIR analyses. Thin films of these composites with different proportions of graphene were prepared. Morphology of the hybrids prepared was studied by the SEM technique. Properties of the composite films were studied by dynamical mechanical thermal (DMT) analysis to measure their glass transition temperature (T g) and storage modulus. These properties have been compared with previously reported values using pristine graphene (Gr) as a filler. The increase in thermal mechanical properties on addition of silanized graphene (SiGr) showed a large shift in the T g and more increase in storage modulus by chemically binding SiGr sheets on the aramid chains. Aminophenyl-trialkoxysilane was found to give better results due to the presence of phenyl groups which were more rigid than propyl groups present in aminopropyl-trialkoxysilane. The effect of chemical bonding and the possible π-π secondary bond interactions between the matrix and graphene platelets on the properties of the resulting hybrids are discussed.

2.
Polymers (Basel) ; 12(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227943

RESUMO

This paper reports the preparation of Kevlar-Nomex copolymer nano-composites with exfoliated pristine and functionalized graphene sheets (Grs). The graphene oxide (GrO) platelets were amidized by the reaction of amine-terminated aramid (Ar) with the functional groups present on the GrO surface to prepare the nano-composites films with different loadings of GrO. Chemical changes involved during the oxidation and subsequent amidation were monitored by Raman, FTIR and XP spectroscopic analyses. Morphology of the composite films was studied by atomic force and scanning electron microscopies. Viscoelastic properties of the hybrid films were studied for their glass transition temperature (Tg) and storage modulus by dynamical mechanical thermal analysis (DMTA). A higher shift in glass transition temperature was obtained by chemically binding the aramid copolymer chains on the functionalized Gr sheets. The increase in tensile strength and modulus at various loadings of GrO are compared with the composites using pristine Gr. The effect of interfacial interactions between the matrix chains and the reinforcement on the properties of these hybrids have been explained.

3.
Nanomaterials (Basel) ; 8(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735952

RESUMO

In this work in-situ polymerization technique has been used to chemically link the functionalized multiwalled carbon nanotubes (CNTs) with aramid matrix chains. Phenylene diamine monomers were reacted in the first stage with the carboxylic acid functionalized CNTs and then amidized in-situ using terephthaloyl chloride generating chemically bonded CNTs with the matrix. Various proportions of the CNTs were used to prepare the hybrid materials. The functionalization procedure was studied by Fourier transform infrared (FTIR) spectroscopy and composite morphology investigated by scanning electron microscopy (SEM). Thermal mechanical properties of these hybrids, together with those where pristine CNTs with similar loadings were used, are compared using tensile and dynamic mechanical analysis (DMA). The tensile strength and temperature involving α-relaxations on CNT loading increased with CNT loading in both systems, but much higher values, i.e., 267 MPa and 353 °C, respectively, were obtained in the chemically bonded system, which are related to the nature of the interface developed as observed in SE micrographs. The water absorption capacity of the films was significantly reduced from 6.2 to 1.45% in the presence pristine CNTs. The inclusion of pristine CNTs increased the electric conductivity of the aramid films with a minimum threshold value at the loading of 3.5 wt % of CNTs. Such mechanically strong and thermally stable aramid and easily processable composites can be suitable for various applications including high performance films, electromagnetic shielding and radar absorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA