Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 110(5): 2121-2129, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340531

RESUMO

Upscaling the production capacity of inactivated poliovirus vaccines (IPV) is urgently needed to eradicate polio worldwide. For the development of a robust manufacturing process for IPV, the impact of stresses on the properties of the poliovirus during manufacturing needs to be carefully evaluated. In this study, the physicochemical properties of Sabin poliovirus after low pH exposure were analyzed by asymmetrical flow field-flow fractionation coupled to multi-angle laser light scattering (AF4-MALS), sedimentation velocity analytical ultracentrifugation (SV-AUC), transmission electron microscopy (TEM), dynamic light scattering (DLS) and surface plasmon resonance (SPR). Low pH stress caused structural changes and aggregation of inactivated poliovirus virions, whereas degraded virion particles would not revert to native virions even after neutralization. Importantly, a complete loss of the D-antigenicity of IPV by low pH stress, followed by neutralization, was observed in SPR. These results suggest that the exposure of poliovirus particle to low pH stress would induce irreversible denaturation and aggregation of virus particles and lead to the loss of D-antigenicity; thus, low pH stress during the manufacturing of poliovirus vaccine should be minimized. The analytical methods above can be efficiently utilized in the development of high-integrity manufacturing processes and high-quality vaccines.


Assuntos
Poliomielite , Poliovirus , Humanos , Vacina Antipólio de Vírus Inativado , Ressonância de Plasmônio de Superfície , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...