Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 43(3): 1385-400, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936723

RESUMO

PURPOSE: In photon counting (PC) x-ray imaging and computed tomography (CT), the broad x-ray spectrum can be split into two parts using an x-ray filter with appropriate K-edge energy, which can improve material decomposition. Recent experimental study has demonstrated substantial improvement in material decomposition with PC CT when K-edge filtered x-rays were used. The purpose of the current work was to conduct further investigations of the K-edge filtration method using comprehensive simulation studies. METHODS: The study was performed in the following aspects: (1) optimization of the K-edge filter for a particular imaging configuration, (2) effects of the K-edge filter parameters on material decomposition, (3) trade-off between the energy bin separation, tube load, and beam quality with K-edge filter, (4) image quality of general (unsubtracted) images when a K-edge filter is used to improve dual energy (DE) subtracted images, and (5) improvements with K-edge filtered x-rays when PC detector has limited energy resolution. The PC x-ray images of soft tissue phantoms with 15 and 30 cm thicknesses including iodine, CaCO3, and soft tissue contrast materials, were simulated. The signal to noise ratio (SNR) of the contrast elements was determined in general and material-decomposed images using K-edge filters with different atomic numbers and thicknesses. The effect of the filter atomic number and filter thickness on energy separation factor and SNR was determined. The boundary conditions for the tube load and halfvalue layer were determined when the K-edge filters are used. The material-decomposed images were also simulated using PC detector with limited energy resolution, and improvements with K-edge filtered x-rays were quantified. RESULTS: The K-edge filters with atomic numbers from 56 to 71 and K-edge energies 37.4-63.4 keV, respectively, can be used for tube voltages from 60 to 150 kVp, respectively. For a particular tube voltage of 120 kVp, the Gd and Ho were the optimal filter materials to achieve highest SNR. For a particular K-edge filter of Gd and tube voltage of 120 kVp, the filter thickness 0.6 mm provided maximum SNR for considered imaging applications. While K-edge filtration improved SNR of CaCO3 and iodine by 41% and 36%, respectively, in DE subtracted images, it did not deteriorate SNR in general images. For x-ray imaging with nonideal PC detector, the positive effect of the K-edge filter was increased when FWHM energy resolution was degraded, and maximum improvement was at 60% FWHM. CONCLUSIONS: This study has shown that K-edge filtered x-rays can provide substantial improvements of material selective PC x-ray and CT imaging for nearly all imaging applications using 60-150 kVp tube voltages. Potential limitations such as tube load, beam hardening, and availability of filter material were shown to not be critical.


Assuntos
Imagens de Fantasmas , Fótons , Tomografia Computadorizada por Raios X/instrumentação , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
2.
Phys Med Biol ; 60(23): 8949-75, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26539971

RESUMO

Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2 × 256 pixel configuration and 1 × 1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal DSCT in CT imaging including DE subtracted CT. However, the limitations of the PCCT detector does not allow it to reach its full potential and therefore further efforts are needed to improve PCCT detectors.


Assuntos
Imagens de Fantasmas , Fótons , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Cádmio/química , Humanos , Iodo/química , Telúrio/química , Raios X , Zinco/química
3.
Med Phys ; 42(9): 5517-29, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328999

RESUMO

PURPOSE: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. METHODS: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. RESULTS: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. CONCLUSIONS: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.


Assuntos
Elétrons/uso terapêutico , Imãs , Aceleradores de Partículas , Radioterapia/instrumentação , Análise Espectral/instrumentação
4.
Phys Med Biol ; 60(6): 2453-74, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25739788

RESUMO

The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1 × 1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT numbers to quantify multi-energy PCS-CT images, application of K-edge filtered x-rays for improved soft tissue decomposition, and several others. The study suggests that the presented PCS-CT technology meets the requirements of a particular clinical application, i.e. dedicated breast CT.


Assuntos
Fótons , Análise Espectral/métodos , Tomografia Computadorizada por Raios X/métodos , Cádmio/química , Humanos , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Análise Espectral/instrumentação , Telúrio/química , Tomografia Computadorizada por Raios X/instrumentação , Raios X , Zinco/química
5.
Med Phys ; 40(5): 051905, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635275

RESUMO

PURPOSE: Photon counting spectral (PCS) computed tomography (CT) shows promise for breast imaging. An issue with current photon-counting detectors is low count rate capabilities, artifacts resulting from nonuniform count rate across the field of view, and suboptimal spectral information. These issues are addressed in part by using tissue-equivalent adaptive filtration of the x-ray beam. The purpose of the study was to investigate the effect of adaptive filtration on different aspects of PCS breast CT. METHODS: The theoretical formulation for the filter shape was derived for different filter materials and evaluated by simulation and an experimental prototype of the filter was fabricated from a tissue-like material (acrylic). The PCS CT images of a glandular breast phantom with adipose and iodine contrast elements were simulated at 40, 60, 90, and 120 kVp tube voltages, with and without adaptive filter. The CT numbers, CT noise, and contrast-to-noise ratio (CNR) were compared for spectral CT images acquired with and without adaptive filters. Similar comparison was made for material-decomposed PCS CT images. RESULTS: The adaptive filter improved the uniformity of CT numbers, CT noise, and CNR in both ordinary and material decomposed PCS CT images. At the same tube output the average CT noise with adaptive filter, although uniform, was higher than the average noise without adaptive filter due to x-ray absorption by the filter. Increasing tube output, so that average skin exposure with the adaptive filter was same as without filter, made the noise with adaptive filter comparable to or lower than that without adaptive filter. Similar effects were observed when energy weighting was applied, and when material decompositions were performed using energy selective CT data. CONCLUSIONS: An adaptive filter decreases count rate requirements to the photon counting detectors which enables PCS breast CT based on commercially available detector technologies. Adaptive filter also improves image quality in PCS breast CT by decreasing beam hardening artifacts and by eliminating spatial nonuniformities of CT numbers, noise, and CNR.


Assuntos
Mamografia/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Humanos , Iodo , Imagens de Fantasmas
6.
Phys Med Biol ; 57(6): 1575-93, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22397927

RESUMO

As x-ray imaging technology moves from conventional radiography and computed tomography (CT) to spectral radiography and CT, dedicated phantom materials are needed for spectral imaging. The spectral phantom materials should accurately represent the energy-dependent mass-attenuation coefficients of different types of tissues. Although tissue-equivalent phantom materials were previously developed for CT and radiation therapy applications, these materials are suboptimal for spectral radiography and CT; they are not compatible with contrast agents, do not represent many of the tissue types and do not provide accurate values of attenuation characteristics of tissue. This work provides theoretical framework and a practical method for developing tissue-equivalent spectral phantom materials with a required set of parameters. The samples of the tissue-equivalent spectral phantom materials were developed, tested and characterized. The spectral phantom materials were mixed with iodine, gold and calcium contrast agents and evaluated. The materials were characterized by CT imaging and x-ray transmission experiments. The fabricated materials had nearly identical densities, mass attenuation coefficients, effective atomic numbers and electron densities as compared to corresponding tissue materials presented in the ICRU-44 report. The experimental results have shown good volume uniformity and inter-sample uniformity (repeatability of sample fabrication) of the fabricated materials. The spectral phantom materials were fabricated under laboratory conditions from readily available and inexpensive components. It was concluded that the presented theoretical framework and fabrication method of dedicated spectral phantom materials could be useful for researchers and developers working in the new area of spectral radiography and CT. Independently, the results could also be useful for other applications, such as radiation therapy.


Assuntos
Imagens de Fantasmas , Radiografia , Tomografia Computadorizada por Raios X , Tecido Adiposo/diagnóstico por imagem , Fenômenos Biofísicos , Água Corporal/diagnóstico por imagem , Osso e Ossos/diagnóstico por imagem , Cálcio , Tecido Conjuntivo/diagnóstico por imagem , Meios de Contraste , Ouro , Humanos , Iodo , Modelos Teóricos , Imagens de Fantasmas/normas , Imagens de Fantasmas/estatística & dados numéricos
7.
Phys Med Biol ; 57(6): 1595-615, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22398007

RESUMO

Photon counting spectral computed tomography (PCSCT) provides material selective CT imaging at a single CT scan and fixed tube voltage. The PCSCT data are acquired in several energy ranges (bins) arranged over the x-ray spectrum. The quasi-monoenergetic CT images are acquired in these energy bins and are used for material decomposition. The PCSCT exhibits inherent limitations when material decomposition is performed using energy bins. For effective material decomposition, the energy bins used for material decomposition should be sufficiently narrow and well separated. However, when narrow bins are used, a large fraction of the detected x-ray counts is lost and statistical noise is increased. Alternatively, the x-ray spectrum can be split into a few larger bins with no gap in between and all detected x-ray photons can be used for material decomposition. However, in this case the energy bins are too wide and not well separated, which results in suboptimal material decomposition. The above contradictory requirements can be resolved if the x-ray photons are physically removed from the regions of the energy spectrum between the energy bins. Such a selective removal can be performed using filtration of the x-ray beam by high-Z filter materials with appropriate positions of K-edge energies. The K-edge filtration of x-rays can, therefore, provide necessary gaps between the energy bins with no dose penalty to the patient. In the current work, we proposed using selective K-edge filtration of x-rays in PCSCT and performed the first experimental investigation of this approach. The PCSCT system included a cadmium zinc telluride semiconductor detector with 2 × 256 pixels and 1 × 1 mm(2) pixel size, and five energy bins. The CT phantom had 14 cm diameter and included contrast elements of iodine, gold and calcifications with clinically relevant concentrations. The tube voltages of 60, 90 and 120 kVp were used. K-edge filters based on Ba (E(k) = 37.44 keV) were used for a 60 kVp tube voltage and Gd (E(k) = 50.24 keV) was used for the 90 and 120 kVp tube voltages, respectively. The material selective CT images were also acquired with conventional Al filtration for comparison. The half-value layers of x-ray beams after K-edge and Al filtration were matched. The mean entrance skin exposure was 280 mR for all tube voltages and filters. The contrast-to-noise ratio (CNR) in material-decomposed images was approximately 30%-50% higher when K-edge filters were used instead of Al filters. It was concluded that K-edge filtration of x-rays provides substantial improvement of the CNR in material-selective PCSCT. Further optimization of K-edge filter materials, tube voltages, detector technology and energy bin settings will provide even higher CNR in decomposed images.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Fenômenos Biofísicos , Cádmio , Meios de Contraste , Filtração , Humanos , Imagens de Fantasmas , Fótons , Interpretação de Imagem Radiográfica Assistida por Computador , Semicondutores , Telúrio , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Zinco
8.
Phys Med Biol ; 56(17): 5735-51, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21841213

RESUMO

Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120 kVp tube voltages were compared to corresponding theoretical spectra. The low-energy tailing was nearly completely eliminated from 59.6 and 122 keV isotope spectra, and 60, 80 and 120 kVp x-ray spectra, when CAPture detector was used with 30° tilted angle irradiation. It is concluded that using a CZT detector with modified electric field in tilted angle configuration resolves problem of the tailing effect in CZT detectors, opening promising possibilities in gamma-ray and x-ray spectroscopy applications.


Assuntos
Cádmio/química , Método de Monte Carlo , Radiometria/instrumentação , Semicondutores/instrumentação , Espectrometria por Raios X/métodos , Telúrio/química , Zinco/química , Algoritmos , Eletrodos , Desenho de Equipamento , Raios gama , Fótons , Doses de Radiação , Radiometria/métodos , Sensibilidade e Especificidade , Análise Espectral
9.
Phys Med Biol ; 56(7): 1905-30, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21364268

RESUMO

Spectral CT systems with photon counting detectors have more advantages compared to conventional CT systems. However, clinical applications have been hampered for a long time due to the high demands of clinical systems and limitations of spectroscopic x-ray detectors. Photon counting detector technology has gained considerable improvements in the past decade, and spectral CT has become a hot topic. Several experimental spectral CT systems are under investigation. The purpose of this work was to perform the first direct, side-by-side comparison of existing spectral CT technology with a mature clinical CT system based on a conventional energy integrating detector. We have built an experimental spectral CT system whose main parameters are similar to the parameters of a clinical CT system. The system uses a spectroscopic cadmium zinc telluride (CZT) detector. The detector includes two rows of CZT pixels with 256 pixels in each row. The pixel size is 1 × 1 mm(2), and the maximum count rate is 2 Mcounts/pixel/s. The spectral CT system has a magnification factor of 1.62 and the source to detector and source to image distances of 85 and 53 cm, respectively. The above parameters are similar to those of the clinical CT system, Siemens Sensation 16, used for comparison. The two systems were compared by imaging spatial resolution and contrast resolution phantoms made from acrylic cylinders with 14 cm diameters. The resolution phantom included Al wires with 0.3, 0.6, and 1 mm diameters, and 0.25 g cc(-1) CaCO(3) contrast. The contrast phantom included contrast elements with 1.7, 5, and 15 mg cc(-1) iodine, and 1.1, 3.3, and 10 mg cc(-1) gadolinium. The phantoms were imaged with the two systems using 120 kVp tube voltage and 470 mR total skin exposure. The spectral CT showed CT numbers, image noise, and spatial and contrast resolutions to be similar within 10% compared to the Siemens 16 system, and provided an average of 10% higher CNR. However, the spectral CT system had a major advantage in that the iodine, gadolinium, and CaCO(3) contrasts were decomposed by dual-energy and K-edge subtraction methods using energy selective CT data acquired in a single CT scan and fixed tube voltage. It is concluded that photon counting spectral CT technology is close to feasibility for routine clinical applications. Furthermore, it is ready for some clinical applications such as dedicated breast CT which has relatively lower demands on photon counting detectors.


Assuntos
Mamografia/métodos , Fótons , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
10.
Phys Med Biol ; 55(18): 5317-39, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20736493

RESUMO

The aim of the study is to determine the upper limits of the signal-to-noise ratio (SNR) in radiography and computed tomography (CT) with polyenergetic x-ray sources. In x-ray imaging, monoenergetic x-rays provide a higher SNR compared to polyenergetic x-rays. However, the SNR in polyenergetic x-ray imaging can be increased when a photon-counting detector is used and x-rays are optimally weighted according to their energies. For a particular contrast/background combination and at a fixed x-ray entrance skin exposure, the SNR in energy-weighting x-ray imaging depends on tube voltage and can be maximized by selecting the optimal tube voltage. The SNR in energy-weighted x-ray images acquired at this optimal tube voltage is the highest SNR that can be achieved with polyenergetic x-ray sources. The optimal tube voltages and the highest SNR were calculated and compared to the SNR of monoenergetic x-ray imaging. Monoenergetic, energy-weighting polyenergetic and energy-integrating polyenergetic x-ray imagings were simulated at a fixed entrance skin exposure of 20 mR. The tube voltages varied in the range of 30-140 kVp with 10 kV steps. Contrast elements of CaCO(3), iodine, adipose and tumor with thicknesses of 280 mg cm(-2), 15 mg cm(-2), 1 g cm(-2) and 1 g cm(-2), respectively, inserted in a soft tissue background with 10 cm and 20 cm thicknesses, were used. The energy weighting also improves the contrast-to-noise ratio (CNR) in CT when monoenergetic CT projections are optimally weighted prior to CT reconstruction (projection-based weighting). Alternatively, monoenergetic CT images are reconstructed, optimally weighted and composed to yield a final CT image (image-based weighting). Both projection-based and image-based weighting methods improve the CNR in CT. An analytical approach was used to determine which of these two weighting methods provides the upper limit of the CNR in CT. The energy-weighting method was generalized and expanded as a weighting method applicable in areas other than x-ray and CT. An optimal x-ray tube voltage providing the highest SNR in energy-weighting x-ray imaging was determined for each contrast/background combination. Depending on the imaging task, the highest SNR with energy-weighted polyenergetic x-rays was close to the SNR provided by monoenergetic x-rays. In CT, projection-based weighting provided higher CNR than image-based weighting, thus determining an upper limit of the CNR in CT. The weighting approach can be applied to imaging methods with contrast mechanisms other than x-ray interaction. A unique, task-dependent tube voltage exists in photon-counting x-ray and CT that provides the highest SNR with polyenergetic x-rays. The highest SNR achieved in photon-counting energy-weighted x-ray and CT can approach the SNR of monoenergetic x-ray and CT imaging, depending on the imaging task.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Tecido Adiposo/diagnóstico por imagem , Carbonato de Cálcio , Meios de Contraste , Humanos , Iodo , Neoplasias/diagnóstico por imagem
11.
Phys Med Biol ; 55(10): 2841-61, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20427852

RESUMO

The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm(3) volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 microCi cm(-3) activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm(-2) were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360 degrees circumference. Spatial resolution was 0.6-1.2 mm FWHM with a readout pixel resolution of 80 microm. The detector is flexible, reusable and easy to handle; it provides virtually real-time imaging. An intravascular imaging detector based on storage phosphor has shown a potential for imaging human coronary artery plaques. The detector provides the sensitivity, spatial resolution, flexibility and short imaging times necessary for clinical applications. Future research will decrease the detector diameter from 2 mm to 1 mm, and will apply the design to in vivo animal experiments.


Assuntos
Vasos Sanguíneos , Diagnóstico por Imagem/métodos , Elétrons , Absorção , Animais , Autorradiografia , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/efeitos da radiação , Diagnóstico por Imagem/instrumentação , Difusão , Fluordesoxiglucose F18/metabolismo , Humanos , Luz , Coelhos
12.
Med Phys ; 36(11): 5107-19, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19994521

RESUMO

PURPOSE: The purpose of this work was to investigate the effect of characteristic x rays on the performance of photon counting detectors for multienergy x-ray imaging. X-ray and CT systems with photon counting detectors have compelling advantages compared to energy integrating detectors, and cadmium zinc telluride (CZT) detector is the detector of choice. However, current CZT detectors exhibit several limitations that hamper their practical applications. These limitations include hole trapping, high leakage current, and charge sharing between detector pixels. Charge sharing occurs due to the diffusion of charge when it drifts toward the pixel electrodes. It also occurs due to nonlocal reabsorption of characteristic and scattered x rays created in the detector volume. Hole trapping, leakage current, and charge diffusion may potentially have technical solutions. Characteristic x-ray escape and scatter, however, are fundamental in nature and cannot be easily addressed. The x-ray scatter in the CZT material is small at photon energies used in x-ray imaging. Therefore, the remaining major factor is characteristic x ray. METHODS: Monte Carlo simulations were used for this study. An experimental photon counting multienergy x-ray imaging system was used to compare simulations to experimental results. An x-ray spectrum at 120 kVp tube voltage was used. The x-ray energy range was split into five subregions (energy bins) and Monte Carlo simulations were performed at average x-ray energies corresponding to these energy bins. The detector pixel size was changed within the 0.1-1 mm range, which covered all possible applications including radiography and CT imaging. The pixel shapes included square and strip pixels. For strip pixels, tilted angle irradiation of the CZT detector was also investigated. RESULTS: The characteristic x rays escaped the pixels in approximately 70% of all x-ray interactions for the smallest pixel size of 0.1 mm. The escape fraction decreased to 20% for the largest pixel size of 1 mm. All escape fractions, for all pixel sizes, at five energies, for square and strip pixels, and at three tilt angles were calculated and presented in tables. Simulated and measured spectra at 120 kVp were compared. CONCLUSIONS: Characteristic x-ray escape deteriorates energy and spatial resolution, particularly for small pixel sizes. Correction methods should be developed based on the results of the simulations and experimental study.


Assuntos
Fótons , Radiografia/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Raios X , Cádmio , Simulação por Computador , Elétrons , Método de Monte Carlo , Telúrio , Tomografia Computadorizada por Raios X/instrumentação , Zinco
13.
Phys Med Biol ; 54(16): 4971-92, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19641240

RESUMO

The signal-to-noise ratio (SNR) in x-ray imaging can be increased using a photon counting detector which could allow for rejecting electronics noise and for weighting x-ray photons according to their energies. This approach, however, was not feasible for a long time because photon counting x-ray detectors with very high count rates, good energy resolution and a large number of small pixels were required. These problems have been addressed with the advent of new detector materials, fast readout electronics and powerful computers. In this work, we report on the experimental evaluation of projection x-ray imaging with a photon counting cadmium-zinc-telluride (CZT) detector with energy resolving capabilities. The detector included two rows of pixels with 128 pixels per row with 0.9 x 0.9 mm(2) pixel size, and a 2 Mcount pixel(-1) s(-1) count rate. The x-ray tube operated at 120 kVp tube voltage with 2 mm Al-equivalent inherent filtration. The x-ray spectrum was split into five regions, and five independent x-ray images were acquired at a time. These five quasi-monochromatic x-ray images were used for x-ray energy weighting and material decomposition. A tissue-equivalent phantom was used including contrast elements simulating adipose, calcifications, iodine and air. X-ray energy weighting improved the SNR of calcifications and iodine by a factor of 1.32 and 1.36, respectively, as compared to charge integrating. Material decomposition was performed by dual energy subtraction. The low- and high-energy images were generated in the energy ranges of 25-60 keV and 60-120 keV, respectively, by combining five monochromatic image data into two. X-ray energy weighting was applied to low- and high-energy images prior to subtraction, and this improved the SNR of calcifications and iodine in dual energy subtracted images by a factor of 1.34 and 1.25, respectively, as compared to charge integrating. The detector energy resolution, spatial resolution, linearity, count rate, noise and image uniformity were investigated. The limitations of this technology were emphasized and possible solutions were discussed.


Assuntos
Fótons , Compostos de Cádmio , Modelos Lineares , Imagens de Fantasmas , Telúrio , Raios X , Zinco
14.
Med Phys ; 36(4): 1098-108, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19472614

RESUMO

The purpose of this work was to evaluate potential advantages and limitations of CZT detectors used in surface-on, edge-on, and tilted angle irradiation geometries. Simulations and experimental investigations of the energy spectrum measured by a CZT detector have been performed using different irradiation geometries of the CZT. Experiments were performed using a CZT detector with 10 x 10 mm2 size and 3 mm thickness. The detector was irradiated with collimated photon beams from Am-241 (59.5 keV) and Co-57 (122 keV). The edge-scan method was used to measure the detector response function in edge-on illumination mode. The tilted angle mode was investigated with the radiation beam directed to the detector surface at angles of 90 degrees, 15 degrees, and 10 degrees. The Hecht formalism was used to simulate theoretical energy spectra. The parameters used for simulations were matched to experiment to compare experimental and theoretical results. The tilted angle CZT detector suppressed the tailing of the spectrum and provided an increase in peak-to-total ratio from 38% at 90 degrees to 83% at 10 degrees tilt angle for 122 keV radiation. The corresponding increase for 59 keV radiation was from 60% at 90 degrees to 85% at 10 degrees tilt angle. The edge-on CZT detector provided high energy resolution when the beam thickness was much smaller than the thickness of CZT. The FWHM resolution in edge-on illumination mode was 4.2% for 122 keV beam with 0.3 mm thickness, and rapidly deteriorated when the thickness of the beam was increased. The energy resolution of surface-on geometry suffered from strong tailing effect at photon energies higher than 60 keV. It is concluded that tilted angle CZT provides high energy resolution but it is limited to a 1D linear array configuration. The surface-on CZT provides 2D pixel arrays but suffers from tailing effect and charge build up. The edge-on CZT is considered suboptimal as it requires small beam thickness and also suffers from charge buildup.


Assuntos
Compostos de Cádmio/química , Telúrio/química , Zinco/química , Algoritmos , Simulação por Computador , Eletrônica , Desenho de Equipamento , Modelos Estatísticos , Fótons , Radiometria/instrumentação , Semicondutores
15.
Phys Med Biol ; 53(20): 5595-613, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18799830

RESUMO

First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied to low- and high-energy CT projections used for material decomposition. This improved the CNR in images of decomposed calcification and iodine by a factor of 1.57 and 1.46, respectively, as compared to conventional charge integrating CT. Some limitations were observed due to hole trapping in CZT and charge sharing between the detector pixels. First experimental results demonstrate that energy-resolved CT is coming close to its practical applications. Although hole trapping and charge sharing in CZT deteriorates x-ray spectrum and limits CNR improvement with energy weighting and detector count rate, this problem has a feasible solution, which is discussed in this paper and is a matter of ongoing research.


Assuntos
Intensificação de Imagem Radiográfica/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Radiometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Imagens de Fantasmas , Fótons , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Phys Med Biol ; 53(5): 1475-95, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18296774

RESUMO

The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20 degrees tilting angle decreased the tailing of the measured x-ray spectrum as compared to a conventional CZT detector. It was concluded that the energy-resolved MSMS CT with tilted angle CZT detector is potentially feasible and could provide a unique combination of photon counting, energy weighting, scatter rejection and single kVp dual energy subtraction CT imaging.


Assuntos
Tomografia Computadorizada por Raios X/métodos , Artefatos , Mama/patologia , Estudos de Viabilidade , Fótons
17.
Med Phys ; 33(7): 2598-609, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16898464

RESUMO

The delivery accuracy of radiation therapy for pulmonary and abdominal tumors suffers from tumor motion due to respiration. Respiratory gating should be applied to avoid the use of a large target volume margin that results in a substantial dose to the surrounding normal tissue. Precise respiratory gating requires the exact spatial position of the tumor to be determined in real time during treatment. Usually, fiducial markers are implanted inside or next to the tumor to provide both accurate patient setup and real-time tumor tracking. However, current tumor tracking systems require either substantial x-ray exposure to the patient or large fiducial markers that limit the value of their application for pulmonary tumors. We propose a real-time tumor tracking system using implanted positron emission markers (PeTrack). Each marker will be labeled with low activity positron emitting isotopes, such as 124I, 74As, or 84Rb. These isotopes have half-lives comparable to the duration of radiation therapy (from a few days to a few weeks). The size of the proposed PeTrack marker will be 0.5-0.8 mm, which is approximately one-half the size of markers currently employed in other techniques. By detecting annihilation gammas using position-sensitive detectors, multiple positron emission markers can be tracked in real time. A multimarker localization algorithm was developed using an Expectation-Maximization clustering technique. A Monte Carlo simulation model was developed for the PeTrack system. Patient dose, detector sensitivity, and scatter fraction were evaluated. Depending on the isotope, the lifetime dose from a 3.7 MBq PeTrack marker was determined to be 0.7-5.0 Gy at 10 mm from the marker. At the center of the field of view (FOV), the sensitivity of the PeTrack system was 240-320 counts/s per 1 MBq marker activity within a 30 cm thick patient. The sensitivity was reduced by 45% when the marker was near the edge of the FOV. The scatter fraction ranged from 12% (124I, 74As) to 16% (84Rb). In addition, four markers (labeled with 124I) inside a 30 cm diameter water phantom were simulated to evaluate the feasibility of the multimarker localization algorithm. Localization was considered successful if a marker was localized to within 2 mm from its true location. The success rate of marker localization was found to depend on the number of annihilation events used and the error in the initial estimate of the marker position. By detecting 250 positron annihilation events from 4 markers (average of 62 events per marker), the marker success rates for initial errors of +/-5, +/-10, and +/-15 mm were 99.9%, 99.6%, and 92.4%, respectively. Moreover, the average localization error was 0.55 (+/-0.27) mm, which was independent of initial error. The computing time for localizing four markers was less than 20 ms (Pentium 4, 2.8 GHz processor, 512 MB memory). In conclusion, preliminary results demonstrate that the PeTrack technique can potentially provide real-time tumor tracking with low doses associated with the marker's activity. Furthermore, the small size of PeTrack markers is expected to facilitate implantation and reduce patient risk.


Assuntos
Neoplasias/radioterapia , Próteses e Implantes , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Braquiterapia/instrumentação , Braquiterapia/métodos , Simulação por Computador , Humanos , Método de Monte Carlo , Movimento , Aceleradores de Partículas , Imagens de Fantasmas , Espalhamento de Radiação , Sensibilidade e Especificidade , Software , Fatores de Tempo
18.
Phys Med Biol ; 51(17): 4267-87, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16912381

RESUMO

X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR improvement was 42% and 31% when CaCO(3) contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for CaCO(3). The SNRs of the photon counting single-kVp dual-energy subtracted images of CaCO(3) and adipose were higher by 2.04 and 2.74 times, respectively, as compared to currently used dual-kVp dual-energy subtracted images. Experiments with a CZT crystal with 2 mm thickness have shown significant decrease in the tailing effect of the CZT pulse spectrum at 59 keV and 122 keV photon energies, when the tilting angle configuration was used. Finally, feasibility of the tilted angle CZT detector for photon counting cone beam breast CT imaging was demonstrated.


Assuntos
Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Compostos de Cádmio/química , Carbonato de Cálcio/química , Humanos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Fótons , Radiometria/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Telúrio/química , Tomografia Computadorizada por Raios X/instrumentação , Compostos de Zinco/química
19.
Phys Med Biol ; 51(4): 963-79, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16467590

RESUMO

Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and experiments. Experiments showed that detecting the coronary plaques using the proposed technique is possible. The proposed technique has the potential for fast and accurate detection of vulnerable coronary and other intravascular plaques.


Assuntos
Autorradiografia/instrumentação , Cateterismo , Doença da Artéria Coronariana/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/instrumentação , Transdutores , Autorradiografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos
20.
Phys Med Biol ; 50(24): 5813-27, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16333157

RESUMO

Photon counting x-ray imaging provides efficient rejection of the electronics noise, no pulse height (Swank) noise, less noise due to optimal photon energy weighting and the possibility of energy resolved image acquisition. These advantages apply also to CT when projection data are acquired using a photon counting detector. However, photon counting detectors assign a weighting factor of 1 to all detected photons whereas the weighting factor of a charge integrating detector is proportional to the energy of the detected photon. Therefore, data collected by photon counting and charge integrating detectors represent the 'hardening' of the photon beam passed through the object differently. This affects the beam hardening artefacts in the reconstructed CT images. This work represents the first comparative evaluation of the effect of photon counting, charge integrating and energy weighting photon detectors on beam hardening artefacts in CT. Beam hardening artefacts in CT images were evaluated for 20 cm and 14 cm diameter water cylinders with bone and low contrast inserts, at 120 kVp and 90 kVp x-ray tube voltages, respectively. It was shown that charge integrating results in 1.8% less beam hardening artefacts from bone inserts (i.e., CT numbers in the 'shadow' of the bone are less by 1.8% as compared to CT numbers over the periphery of the image), as compared to photon counting. However, optimal photon energy weighting, which provides highest SNR, results in 7.7% higher beam hardening artefacts from bone inserts as compared to photon counting. The magnitude of the 'cupping' artefacts was lower by 1% for charge integrating and higher by 6.1% for energy weighting acquisitions as compared to photon counting. Only the photon counting systems provide an accurate representation of the beam hardening effect due to its flat energy weighting. Because of their energy dependent weighting factors, the charge integrating and energy weighting systems do not provide accurate representation of the beam hardening effect.


Assuntos
Simulação por Computador , Interpretação de Imagem Assistida por Computador , Fótons , Tomografia Computadorizada por Raios X , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...