Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 24338, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934168

RESUMO

In vitro gonad culture systems have proven useful to investigate intrinsic mechanisms of sexual reproduction in animals. Here we describe development of an in vitro culture method for coral ovaries. Mesenterial tissues containing both ovaries and mesenterial filaments were microscopically isolated from the scleractinian coral, Fimbriaphyllia ancora, and culture conditions were optimized. M199 diluted 10× (10% M199, pH 8.1) and supplemented with 25 mM HEPES and the antibiotics, ampicillin, penicillin and streptomycin, supported oocyte survival and maintained the structural integrity of ovaries during short-term culture (~ 6 days). Addition of a commercial antibiotic-antimycotic solution (Anti-Anti) and fetal bovine serum adversely affected ovary maintenance and caused tissue disintegration. Characterization of cultured ovaries showed that there is no difference in cell proliferation of ovarian somatic cells between culture Days 1 and 6. Moreover, the presence of oogonia and expression of a major yolk protein, vitellogenin, were confirmed in ovaries cultured for 6 days. This system will be useful for studying effects of a wide range of substances on coral oogenesis.


Assuntos
Oócitos/citologia , Oogênese , Ovário/citologia , Técnicas de Cultura de Tecidos/métodos , Vitelogeninas/metabolismo , Animais , Antozoários , Feminino , Técnicas In Vitro , Oócitos/metabolismo , Ovário/metabolismo
2.
Gen Comp Endocrinol ; 314: 113905, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534544

RESUMO

The distribution and functions of neurons in scleractinian corals remain largely unknown. This study focused on the Arg-Phe amide family of neuropeptides (RFamides), which have been shown to be involved in a variety of biological processes in animals, and performed molecular identification and characterization in the adult scleractinian coral Euphyllia ancora. The deduced amino acid sequence of the identified RFamide preprohormone was predicted to contain 20 potential neuropeptides, including 1 Pro-Gly-Arg-Phe (PGRF) amide and 15 Gln-Gly-Arg-Phe (QGRF) amide peptides. Tissue distribution analysis showed that the level of transcripts in the tentacles was significantly higher than that in other polyp tissues. Immunohistochemical analysis with the FMRFamide antibody showed that RFamide neurons were mainly distributed in the epidermis of the tentacles and mouth with pharynx. Treatment of E. ancora polyps with synthetic QGRFamide peptides induced polyp contraction. The induction of polyp contraction by QGRFamide peptide treatment was also observed in another scleractinian coral, Stylophora pistillata. These results strongly suggested that RFamides play a role in the regulation of polyp contraction in adult scleractinians.


Assuntos
Antozoários , Neuropeptídeos , Sequência de Aminoácidos , Animais , FMRFamida , Neuropeptídeos/metabolismo
3.
BMC Genomics ; 21(1): 732, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087060

RESUMO

BACKGROUND: Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS: 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS: Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.


Assuntos
Antozoários , Transcriptoma , Animais , Antozoários/genética , Feminino , Gametogênese/genética , Gônadas , Humanos , Masculino , Motilidade dos Espermatozoides
4.
Proc Biol Sci ; 287(1930): 20200578, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32605522

RESUMO

Apoptosis is an evolutionarily conserved process of programmed cell death. Here, we show structural changes in the gonads caused by apoptosis during gametogenesis in the scleractinian coral, Euphyllia ancora. Anatomical and histological analyses revealed that from the non-spawning to the spawning season, testes and ovaries increased in size due to active proliferation, differentiation and development of germ cells. Additionally, the thickness and cell density of the gonadal somatic layer decreased significantly as the spawning season approached. Further analyses demonstrated that the changes in the gonadal somatic layer were caused by apoptosis in a subpopulation of gonadal somatic cells. The occurrence of apoptosis in the gonadal somatic layer was also confirmed in other scleractinian corals. Our findings suggest that decreases in thickness and cell density of the gonadal somatic layer are structural adjustments facilitating oocyte and spermary (male germ cell cluster) enlargement and subsequent gamete release from the gonads. In animal reproduction, apoptosis in germ cells is an important process that controls the number and quality of gametes. However, apoptosis in gonadal somatic cells has rarely been reported among metazoans. Thus, our data provide evidence for a unique use of apoptosis in animal reproduction.


Assuntos
Antozoários/fisiologia , Apoptose , Animais , Diploide , Feminino , Células Germinativas , Gônadas , Masculino , Oócitos , Ovário , Estações do Ano , Testículo
5.
Sci Rep ; 10(1): 9427, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523083

RESUMO

The existence and function of neurons remain largely unexplored in scleractinian corals. To gain a better understanding of neuronal functions in coral physiology, this study focused on Glycine-Leucine-Tryptophan-amide family neuropeptides (GLWamides), which have been shown to induce muscle contraction and larval metamorphosis in other cnidarians. Molecular identification and functional characterization of GLWamides in the adult stony coral Euphyllia ancora were performed. We successfully elucidated the full-length cDNA of GLWamide preprohormone in E. ancora (named EaGLW preprohormone). The deduced amino acid sequence was predicted to contain six potential GLWamide peptides. Tissue distribution analysis demonstrated that transcripts of EaGLW preprohormone were mainly expressed in the mouth (including the pharynx) and tentacles of the polyps. Immunodetection with an anti-GLWamide monoclonal antibody revealed that GLWamide neurons were mainly distributed in the epidermis of the mouth region and tentacle, in agreement with the distribution patterns of the transcripts. Treatment of the isolated mouth and tentacles with synthetic GLWamide peptides induced the contraction of these isolated tissues. Treatment of polyps with synthetic GLWamide peptides induced the contraction of polyps. These results suggest that GLWamides are involved in polyp contraction (myoactivity) in adult scleractinians. Our data provide new information on the physiological function of neuropeptides in scleractinians.


Assuntos
Antozoários/genética , Antozoários/metabolismo , Neuropeptídeos/metabolismo , Sequência de Aminoácidos/genética , Animais , DNA Complementar/genética , Glicina , Leucina , Neurônios/metabolismo , Triptofano
6.
Commun Biol ; 3(1): 308, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541813

RESUMO

Combining cryopreservation of germline stem cells (GSCs) with their subsequent transplantation into recipient fish is a powerful tool for long-term preservation of genetic resources of endangered fishes. However, application of this technique has been limited because endangered species sometimes have small gonads and do not supply enough GSCs to be used for transplantation. This limitation could be overcome by expanding GSCs in vitro, though this has been difficult due to the complexity of reconstructing the gonadal microenvironment that surrounds GSCs. Here, we describe a novel method of in vitro expansion of rainbow trout GSCs using a feeder layer derived from Sertoli cells and a culture medium containing trout plasma. A transplantation assay demonstrated that the in vitro-expanded GSCs exhibited stem cell activity and potency to produce functional eggs, sperm, and eventually healthy offspring. In vitro expansion of GSCs can aid in rescuing fishes that are on the verge of extinction.


Assuntos
Oncorhynchus mykiss/fisiologia , Óvulo/fisiologia , Espermatogônias/fisiologia , Espermatozoides/fisiologia , Animais , Criopreservação , Feminino , Técnicas In Vitro , Masculino , Oncorhynchus mykiss/embriologia , Óvulo/citologia , Espermatogônias/citologia , Espermatozoides/citologia
7.
Gen Comp Endocrinol ; 285: 113270, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525374

RESUMO

Metazoans have evolved a complexity of sexual system and gonad development, however, sexual reproduction of scleractinian corals is not well understood. This study aimed to address the sexual system and gametogenesis in Porites lichen, a common species in the Indo-West Pacific. This study represents the first description of sexual system, which were determined by histological analysis of the samples collected in northern Taiwan. In addition, female and hermaphroditic colonies were separately cultured in aquarium to further monitor the release of eggs/larvae and thereby confirm the breeding system. The results demonstrate that P. lichen is a polygamodioecious brooder and displays seasonal gametogenesis and embryogenesis that ends in late summer. In hermaphroditic colonies, male polyps are predominant and hermaphroditic polyps make up a very small percent (1%-19.3%). In addition, two new gametogenic features were observed from the histological analysis: 1) oocytes developed within the spermaries in hermaphroditic polyps during the early stage of gametogenesis and 2) melanin granular cells were clustered in spermaries in both male and hermaphroditic colonies. This study demonstrated the plasticity of gametogenesis and melanin related cells appeared in corals, which provides an important information to explore hormones and molecular mechanism involving in gonadal arrangement and production of melanin for further studies.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Gônadas/crescimento & desenvolvimento , Animais , Feminino , Geografia , Células Germinativas/metabolismo , Masculino , Melaninas/metabolismo , Oogênese , Reprodução/fisiologia , Espermatogênese , Taiwan
8.
Sci Rep ; 9(1): 14652, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601940

RESUMO

The receptor guanylate cyclases (rGCs) in animals serve as sensitive chemoreceptors to detect both chemical and environmental cues. In reproduction, rGCs were shown to be expressed on sperm and serve as receptors for egg-derived sperm-activating and sperm-attracting factors in some echinoderms and mammals. However, sperm-associated rGCs have only been identified in some deuterostomes thus far, and it remains unclear how widely rGCs are utilized in metazoan reproduction. To address this issue, this study investigated the existence and expression of rGCs, particularly asking if rGCs are involved in the reproduction of a basal metazoan, phylum Cnidaria, using the stony coral Euphyllia ancora. Six paralogous rGCs were identified from a transcriptome database of E. ancora, and one of the rGCs, GC-A, was shown to be specifically expressed in the testis. Immunohistochemical analyses demonstrated that E. ancora GC-A protein was expressed in the spermatocytes and spermatids and eventually congregated on the sperm flagella during spermatogenesis. These findings suggest that GC-A may be involved in the regulation of sperm activity and/or functions (e.g., fertilization) in corals. This study is the first to perform molecular characterization of rGCs in cnidarians and provides evidence for the possible involvement of rGCs in the reproduction of basal metazoans.


Assuntos
Antozoários/crescimento & desenvolvimento , Receptores Acoplados a Guanilato Ciclase/metabolismo , Cauda do Espermatozoide/enzimologia , Animais , Antozoários/enzimologia , Antozoários/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Masculino , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Guanilato Ciclase/genética , Receptores Acoplados a Guanilato Ciclase/isolamento & purificação , Espermatogênese
9.
Mol Reprod Dev ; 86(7): 798-811, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31056825

RESUMO

In a variety of organisms, adult gonads contain several specialized somatic cells that regulate and support the development of germline cells. In stony corals, the characteristics and functions of gonadal somatic cells remain largely unknown. No molecular markers are currently available that allow for the identification and enrichment of gonadal somatic cells in corals. Here, we showed that the testicular somatic cells of a stony coral, Euphyllia ancora, express an endogenous green fluorescent protein (GFP). Fluorescence microscopy showed that, in contrast to the endogenous expression of the red fluorescent protein of E. ancora ovaries that we have previously reported, the testes displayed a distinct green fluorescence. Molecular identification and spectrum characterization demonstrated that E. ancora testes expressed a GFP (named EaGFP) that is a homolog of the GFP from the jellyfish Aequorea victoria and that possesses an excitation maximum of 506 nm and an emission maximum of 514 nm. Immunohistochemical analyses revealed that the testicular somatic cells, but not the germ cells, expressed EaGFP. EaGFP was enclosed within one or a few granules in the cytoplasm of testicular somatic cells, and the granule number decreased as spermatogenesis proceeded. We also showed that testicular somatic cells could be enriched by using endogenous GFP as an indicator. The present study not only revealed one of the unique cellular characteristics of coral testicular cells but also established a technical basis for more in-depth investigations of the function of testicular somatic cells in spermatogenesis in future studies.


Assuntos
Antozoários/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Testículo/citologia , Testículo/metabolismo , Animais , Sequência de Bases , Citoplasma/metabolismo , Escherichia coli/metabolismo , Feminino , Fluorescência , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Masculino , Microscopia de Fluorescência , Ovário/metabolismo , Filogenia , Espermatogênese/fisiologia , Proteína Vermelha Fluorescente
10.
Mol Reprod Dev ; 84(12): 1285-1295, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29064589

RESUMO

The molecular and cellular characteristics of male germ cell development remain largely unknown in corals. This study focused on the expression pattern of acetylated α-tubulin (Ac-α-Tu), which is involved in male germ cell development in various animals across taxa, to gain a better understanding of male germ cell development in the stony coral Euphyllia ancora. Immunohistochemical analysis of the different stages of male germ cells showed the presence of filamentous Ac-α-Tu in the early to late stages of male germ cells-such as spermatogonia, spermatocytes, and spermatids-as well as in the flagella of mature sperm. Immunocytochemical and transmission electron microscope analyses demonstrated that early-stage male germ cells possess long flagella containing Ac-α-Tu. The presence of filamentous Ac-α-Tu was also immunohistochemically demonstrated in the male germ cells from 14 other coral species, implying that possession of flagella with Ac-α-Tu is a common characteristic of male germ cells in stony corals. Therefore, as a distinctive cellular characteristic of male germ cells, Ac-α-Tu could be used as a male germ cell marker in stony corals; indeed, immunolabeling for Ac-α-Tu may be a useful method to aid in the identification and morphological observation of male germ cells in various corals in basic and applied biology (e.g., aquaculture) as well as in ecological studies.


Assuntos
Antozoários/metabolismo , Cauda do Espermatozoide/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Antozoários/citologia , Masculino , Espermátides/citologia , Espermátides/metabolismo , Espermatócitos/citologia , Espermatócitos/metabolismo , Espermatogônias/citologia , Espermatogônias/metabolismo
11.
Sci Rep ; 6: 25868, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27167722

RESUMO

To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction.


Assuntos
Antozoários/metabolismo , Proteínas Luminescentes/genética , Oócitos/metabolismo , Animais , Antozoários/genética , Antozoários/fisiologia , Clonagem Molecular , Feminino , Peróxido de Hidrogênio/metabolismo , Proteínas Luminescentes/metabolismo , Oogênese , Estresse Oxidativo , Proteína Vermelha Fluorescente
12.
Mol Reprod Dev ; 83(4): 298-311, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860442

RESUMO

We previously established a spermatogonial transplantation model in fish using triploid recipients. Although triploid salmonids are sterile, they carry a limited number of immature triploid germ cells that potentially compete with the donor-derived germ cells for their niche. We therefore assessed the biological characteristics of germ cell-deficient gonads in rainbow trout for their suitability as recipients for germ cell transplantation in this study. Antisense morpholino oligonucleotides against the dead end gene were microinjected into the fertilized eggs of rainbow trout to eliminate endogenous germ cells, leaving only their supporting cells. Unlike similar approaches performed in zebrafish and medaka, these germ cell-deficient rainbow trout did not show a male-biased sex ratio. Approximately 30,000 spermatogonia were then transplanted into the body cavities of both germ cell-deficient and control recipients. The donor-derived germ cells showed significantly higher proliferation in the gonads of germ cell-deficient recipients than those in the gonads of the control recipients. Finally, the applicability of the germ cell-deficient recipients for xenogeneic transplantation was evaluated by transplanting rainbow trout spermatogonia into germ cell-deficient masu salmon recipients. The resulting recipient salmon matured normally and produced trout gametes, and early survival of the resulting trout offspring was as high as that of the control offspring. Thus, dead end-knockdown salmonids appear to be ideal recipients for the intraperitoneal transplantation of spermatogonia.


Assuntos
Oncorhynchus mykiss , Espermatogônias/transplante , Animais , Feminino , Técnicas de Silenciamento de Genes , Masculino , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/cirurgia , Espermatogônias/citologia , Transplante Heterólogo/veterinária
13.
Gen Comp Endocrinol ; 228: 95-104, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26868454

RESUMO

Sex steroids play a fundamental role not only in reproduction but also in various other biological processes in vertebrates. Although the presence of sex steroids has been confirmed in cnidarians (e.g., coral, sea anemone, jellyfish, and hydra), which are basal metazoans, only a few studies to date have characterized steroidogenesis-related genes in cnidarians. Based on a transcriptomic analysis of the stony coral Euphyllia ancora, we identified the steroidogenic enzyme 17ß-hydroxysteroid dehydrogenase type 14 (17beta-hsd 14), an oxidative enzyme that catalyzes the NAD(+)-dependent inactivation of estrogen/androgen (estradiol to estrone and testosterone to androstenedione) in mammals. Phylogenetic analysis showed that E. ancora 17beta-Hsd 14 (Ea17beta-Hsd 14) clusters with other animal 17beta-HSD 14s but not with other members of the 17beta-HSD family. Subsequent quantitative RT-PCR analysis revealed a lack of correlation of Ea17beta-hsd 14 transcript levels with the coral's reproductive cycle. In addition, Ea17beta-hsd 14 transcript and protein were detected in all tissues examined, such as the tentacles, mesenterial filaments, and gonads, at similar levels in both sexes, as determined by quantitative RT-PCR analysis and Western blotting with an anti-Ea17beta-Hsd 14 antibody. Immunohistochemical analysis revealed that Ea17beta-Hsd 14 is mainly distributed in the endodermal regions of the polyps, but the protein was also observed in all tissues examined. These results suggest that Ea17beta-Hsd 14 is involved in important functions that commonly occur in endodermal cells or has multiple functions in different tissues. Our data provide information for comparison with advanced animals as well as insight into the evolution of steroidogenesis-related genes in metazoans.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Antozoários/metabolismo , Reprodução/fisiologia , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/imunologia , Androgênios/metabolismo , Androstenodiona/metabolismo , Animais , Antozoários/genética , Antozoários/crescimento & desenvolvimento , Formação de Anticorpos , Western Blotting , Clonagem Molecular , Estradiol/metabolismo , Feminino , Cobaias , Técnicas Imunoenzimáticas , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testosterona/metabolismo
14.
Biol Reprod ; 94(2): 40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26740592

RESUMO

Transcription factors encoded by the Dmrt gene family regulate multiple aspects of animal reproduction. Most studies investigating the Dmrt gene family were conducted in model organisms from bilateral species, with a particular emphasis on gene function in male sex determination. It is still unclear whether the E. ancora Dmrt (EaDmrt) genes found in basal metazoans such as cnidarians share similar characteristics with orthologs in other metazoans. In this study, seven full Dmrt gene transcript sequences for a gonochoric coral, Euphyllia ancora (phylum: Cnidaria; class: Anthozoa), were obtained through transcriptome data mining, RT-PCR analysis, rapid amplification of cDNA ends, and sequencing. These EaDmrts were subjected to quantitative assays measuring temporal and tissue-specific expression. Results demonstrated a unique gene expression pattern for EaDmrtE, which is enriched in female germ cells during the spawning season. Based on the phylogenetic analyses performed across the homologous Dmrt genes in metazoans, we found that the female-specific EaDmrtE gene is not related to the DM1 gene of Acropora spp. coral nor to Dmrt1 of vertebrates, which are involved in sexual reproduction, especially in sex determination (vertebrate Dmrt1). Additionally, high levels of EaDmrtE transcripts detected in unfertilized mature eggs are retained in newly formed zygotes but decrease during embryonic development. We suggest that the newly discovered gene may play a role in oogenesis and early embryogenesis as a maternal factor in corals. Therefore, the sexual reproduction-associated Dmrt gene(s) should have arisen in cnidarians and might have evolved multiple times in metazoans.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antozoários/genética , Células Germinativas/metabolismo , Tionucleosídeos/genética , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Antozoários/metabolismo , Feminino , Filogenia , Reprodução/fisiologia , Tionucleosídeos/metabolismo
15.
Biol Reprod ; 93(3): 57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26178717

RESUMO

To gain a better understanding of how corals form their eggs at both the molecular and cellular levels, we performed a differential screen (suppression subtractive hybridization) to identify genes related to oocyte development in a stony coral, Euphyllia ancora. Through the course of screening, a novel gene that contains three alternate repeats of fibronectin domain 2 and epidermal growth factor (EGF)-like domains, as well as an additional calcium-binding EGF-like domain (EGF-CA), was identified and tentatively named euphy after the scientific name of the coral, E. ancora. Quantitative RT-PCR revealed that expression levels of euphy increased in female colonies as the coral approached reproductive season. Tissue distribution analysis followed by mRNA in situ hybridization revealed that euphy is highly expressed in the ovarian (mesenterial) somatic cells in the body of E. ancora. Staining of tissue sections with an antibody against euphy protein (Euphy) revealed Euphy immunoreactivity in both ovarian somatic cells and oocytes. Subsequent Western blotting demonstrated the presence of abundant Euphy in unfertilized mature eggs. These results indicate that Euphy produced in the ovarian somatic cells is transported to and accumulates within oocytes as a yolk protein during oogenesis. We previously showed that two major yolk proteins, vitellogenin and egg protein, are similarly produced by ovarian somatic cells. Hence, the present study uncovered the third ovarian somatic-derived yolk protein in corals. Our data provide new information that contributes to a more comprehensive understanding of coral egg formation.


Assuntos
Antozoários/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Oócitos/metabolismo , Ovário/citologia , Ovário/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/genética , DNA Complementar/biossíntese , DNA Complementar/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fibronectinas/metabolismo , Imuno-Histoquímica , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , Reprodução , Distribuição Tecidual
16.
Mol Reprod Dev ; 80(9): 763-73, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794227

RESUMO

Continuous production of sperm within the testes is supported by spermatogonial stem cells capable of both self-renewal and the production of numerous differentiated germ cells. We previously demonstrated that a subpopulation of trout type A spermatogonia transplanted into the body cavity of a recipient embryo incorporated into the genital ridge, where they produced functional gametes within the gonads. Various cell-surface proteins could have played a role in the incorporation of spermatogonia into recipient genital ridges. During the preparation of cell suspensions for transplantation in our experimental protocol, however, dissociation of testis by strong proteases was unavoidable. This was problematic as cell-surface proteins may have been at least partially digested by protease activity. In the present study, recovery of spermatogonial surface proteins using short-term culture prior to transplantation was attempted. It was found that spermatogonia cultured in vitro could be harvested by ethylenediaminetetraacetic acid (EDTA) instead of protease treatment. Furthermore, when cultured spermatogonia collected by EDTA treatment were maintained for 24 hr in vitro, they exhibited high adhesiveness. These cultured spermatogonia also possessed higher survival of transplantation compared to spermatogonia newly dispersed by trypsin treatment. These results indicated that spermatogonia possess a reduced ability to migrate toward, adhere to, and/or be incorporated into the recipient genital ridge immediately after protease treatment. Short-term in vitro culturing, however, could allow spermatogonia to recover the surface proteins required for successful incorporation into the recipient genital ridge.


Assuntos
Técnicas de Cultura de Células/veterinária , Gametogênese/fisiologia , Proteínas de Membrana/metabolismo , Oncorhynchus mykiss/fisiologia , Espermatogônias/transplante , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Movimento Celular/fisiologia , Ácido Edético , Masculino
17.
Endocrinology ; 154(9): 3447-59, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766130

RESUMO

Vitellogenin (Vg) is a major yolk protein precursor in numerous oviparous animals. Numerous studies in bilateral oviparous animals have shown that Vg sequences are conserved across taxa and that Vgs are synthesized by somatic-cell lineages, transported to and accumulated in oocytes, and eventually used for supporting embryogenesis. In nonbilateral animals (Polifera, Cnidaria, and Ctenophora), which are regarded as evolutionarily primitive, although Vg cDNA has been identified in 2 coral species from Cnidaria, relatively little is known about the characteristics of yolk formation in their bodies. To address this issue, we identified and characterized 2 cDNA encoding yolk proteins, Vg and egg protein (Ep), in the stony coral Euphyllia ancora. RT-PCR analysis revealed that expression levels of both Vg and Ep increased in the female colonies as coral approached the spawning season. In addition, high levels of both Vg and Ep transcripts were detected in the putative ovarian tissue, as determined by tissue distribution analysis. Further analyses using mRNA in situ hybridization and immunohistochemistry determined that, within the putative ovarian tissue, these yolk proteins are synthesized in the mesenterial somatic cells but not in oocytes themselves. Furthermore, Vg proteins that accumulated in eggs were most likely consumed during the coral embryonic development, as assessed by immunoblotting. The characteristics of Vg that we identified in corals were somewhat similar to those of Vg in bilaterian oviparous animals, raising the hypothesis that such characteristics were likely present in the oogenesis of some common ancestor prior to divergence of the cnidarian and bilaterian lineages.


Assuntos
Antozoários/embriologia , Proteínas do Ovo/biossíntese , Gema de Ovo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Vitelogênese , Animais , Antozoários/metabolismo , Antozoários/ultraestrutura , Recifes de Corais , Ectogênese , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Gema de Ovo/ultraestrutura , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Especificidade de Órgãos , Oceano Pacífico , RNA Mensageiro/metabolismo , Estações do Ano , Caracteres Sexuais , Taiwan , Vitelogeninas/biossíntese , Vitelogeninas/genética , Vitelogeninas/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(5): 1640-5, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319620

RESUMO

The conservation of endangered fish is of critical importance. Cryobanking could provide an effective backup measure for use in conjunction with the conservation of natural populations; however, methodology for cryopreservation of fish eggs and embryos has not yet been developed. The present study established a methodology capable of deriving functional eggs and sperm from frozen type A spermatogonia (ASGs). Whole testes taken from rainbow trout were slowly frozen in a cryomedium, and the viability of ASGs within these testes did not decrease over a 728-d freezing period. Frozen-thawed ASGs that were intraperitoneally transplanted into sterile triploid hatchlings migrated toward, and were incorporated into, recipient genital ridges. Transplantability of ASGs did not decrease after as much as 939 d of cryopreservation. Nearly half of triploid recipients produced functional eggs or sperm derived from the frozen ASGs and displayed high fecundity. Fertilization of resultant gametes resulted in the successful production of normal, frozen ASG-derived offspring. Feasibility and simplicity of this methodology will call for an immediate application for real conservation of endangered wild salmonids.


Assuntos
Criopreservação/métodos , Óvulo/citologia , Espermatozoides/citologia , Testículo/citologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Sobrevivência Celular , Conservação dos Recursos Naturais/métodos , Feminino , Fertilização , Pesqueiros/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Microscopia de Fluorescência , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , Espermatogônias/citologia , Espermatogônias/transplante , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Triploidia
19.
PLoS One ; 7(7): e41569, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848529

RESUMO

Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs.


Assuntos
Antozoários/fisiologia , RNA Helicases DEAD-box/metabolismo , Gametogênese/fisiologia , Oócitos/metabolismo , Espermatócitos/metabolismo , Animais , Antozoários/citologia , Feminino , Masculino , Oócitos/citologia , Espermatócitos/citologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-20541987

RESUMO

Recent progress in genome-based breeding has created various fish strains carrying desirable genetic traits; however, methods for the long-term preservation of their genetic resources have not yet been developed, mainly due to the lack of cryopreservation techniques for fish eggs and embryos. Recently, we established an alternative cryopreservation technique for fish spermatogonia using a slow-freezing method. Furthermore, we developed a transplantation system to produce functional eggs and sperm derived from spermatogonia. Spermatogonia isolated from the testes of vasa-green fluorescent protein (Gfp) transgenic rainbow trout (Oncorhynchus mykiss) were transplanted into the peritoneal cavity of triploid masu salmon (Oncorhynchus masou) hatchlings of both genders. The transplanted trout spermatogonia migrated towards the gonadal anlagen of the recipient salmon, into which they were subsequently incorporated. We confirmed that the donor-derived spermatogonia resumed gametogenesis, and produced sperm and eggs in male and female recipient salmon, respectively. Fertilization of the resultant eggs and sperm produced only rainbow trout in the first filial (F1) generation, suggesting that the sterile triploid recipient salmon produced functional eggs and sperm derived from the trout donors. A combination of spermatogonial transplantation and cryopreservation could be a powerful tool for preserving valuable fish strains with desirable genetic traits and endangered species.


Assuntos
Espermatogônias/transplante , Animais , Criopreservação , Feminino , Masculino , Oncorhynchus mykiss , Triploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...