Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 47(14): 4904-17, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23866138

RESUMO

It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.


Assuntos
Clorófitas/crescimento & desenvolvimento , Lagoas , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Biocombustíveis , Biomassa , Ecossistema , Tamanho da Partícula , Projetos Piloto , Reprodutibilidade dos Testes , Scenedesmus/crescimento & desenvolvimento , Águas Residuárias
2.
Water Res ; 47(13): 4422-32, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23764593

RESUMO

This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day).


Assuntos
Biomassa , Clorófitas/crescimento & desenvolvimento , Lagoas , Reciclagem , Clorófitas/citologia , Gravitação , Projetos Piloto , Termodinâmica , Águas Residuárias , Purificação da Água
3.
Water Res ; 45(20): 6637-49, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22048019

RESUMO

This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation.


Assuntos
Eucariotos/crescimento & desenvolvimento , Eucariotos/isolamento & purificação , Lagoas/parasitologia , Reciclagem/métodos , Biomassa , Eucariotos/citologia , Eutrofização , Projetos Piloto , Especificidade da Espécie , Eliminação de Resíduos Líquidos , Purificação da Água
4.
Bioresour Technol ; 102(1): 35-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20674341

RESUMO

While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.


Assuntos
Biocombustíveis , Microalgas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Animais , Biomassa , Dióxido de Carbono/farmacologia , Floculação/efeitos dos fármacos , Água Doce/análise , Água Doce/microbiologia , Água Doce/virologia , Interações Hospedeiro-Patógeno , Microalgas/efeitos dos fármacos , Microalgas/isolamento & purificação , Microalgas/microbiologia , Microalgas/virologia , Purificação da Água/métodos , Zooplâncton/patogenicidade , Zooplâncton/fisiologia
5.
Water Sci Technol ; 62(6): 1410-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20861557

RESUMO

An enzyme treatment process for early-stage processing of sheepskins has been previously reported by the Leather and Shoe Research Association of New Zealand (LASRA) as an alternative to current industry operations. The newly developed process had marked benefits over conventional processing in terms of a lowered energy usage (73%), processing time (47%) as well as water use (49%), but had been developed as a "proof of principle''. The objective of this work was to develop the process further to a stage ready for adoption by industry. Mass balancing was used to investigate potential modifications for the process based on the understanding developed from a detailed analysis of preliminary design trials. Results showed that a configuration utilising a 2 stage counter-current system for the washing stages and segregation and recycling of enzyme float prior to dilution in the neutralization stage was a significant improvement. Benefits over conventional processing include a reduction of residual TDS by 50% at the washing stages and 70% savings on water use overall. Benefits over the un-optimized LASRA process are reduction of solids in product after enzyme treatment and neutralization stages by 30%, additional water savings of 21%, as well as 10% savings of enzyme usage.


Assuntos
Resíduos Industriais , Peptídeo Hidrolases/química , Curtume , Poluição da Água , Purificação da Água/métodos , Animais , Resíduos Industriais/prevenção & controle , Nova Zelândia , Projetos Piloto , Ovinos , Pele/química , Curtume/métodos , Curtume/normas , Poluição da Água/prevenção & controle
6.
Water Sci Technol ; 58(1): 253-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18653962

RESUMO

Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas.


Assuntos
Dióxido de Carbono/efeitos da radiação , Combustíveis Fósseis , Luz Solar , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Anaerobiose , Animais , Indústria de Laticínios/métodos , Eletroquímica , Eucariotos/isolamento & purificação , Nova Zelândia , Microbiologia da Água , Abastecimento de Água
7.
Water Sci Technol ; 51(12): 103-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16114670

RESUMO

CFD modelling of the incorporation of two baffles equally spaced along the longitudinal axis of the pond and with a length equal to 70% of the pond breadth, indicated a potential improvement in the removal of E. coli in a 4-day secondary facultative pond at 25degrees C from 5 x 10(6) per 100 ml in the effluent from a 1-day anaerobic pond to 4 x 10(4) per 100 ml; the reduction in an un-baffled pond was an order of magnitude less effective. The addition of a similarly baffled 4-day primary maturation pond reduced the effluent E. coli count to 340 per 100 ml; the reduction in an un-baffled series was two orders of magnitude less effective. Well designed baffles thus have considerable potential for reducing pond area requirements and hence costs in the hot tropics. These very promising results highlight the need for field studies on baffled pond systems to validate (or allow calibration) of the CFD model used in this study.


Assuntos
Simulação por Computador , Eliminação de Resíduos Líquidos/métodos , Movimentos da Água , Biodegradação Ambiental , Desenho de Equipamento , Escherichia coli/isolamento & purificação , Modelos Biológicos , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...