Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(20): 6983-6991, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32269076

RESUMO

Newly synthesized major histocompatibility complex (MHC) class I proteins are stabilized in the endoplasmic reticulum (ER) by binding 8-10-mer-long self-peptide antigens that are provided by transporter associated with antigen processing (TAP). These MHC class I:peptide complexes then exit the ER and reach the plasma membrane, serving to sustain the steady-state MHC class I expression on the cell surface. A novel subset of MHC class I molecules that preferentially bind lipid-containing ligands rather than conventional peptides was recently identified. The primate classical MHC class I allomorphs, Mamu-B*098 and Mamu-B*05104, are capable of binding the N-myristoylated 5-mer (C14-Gly-Gly-Ala-Ile-Ser) or 4-mer (C14-Gly-Gly-Ala-Ile) lipopeptides derived from the N-myristoylated SIV Nef protein, respectively, and of activating lipopeptide antigen-specific cytotoxic T lymphocytes. We herein demonstrate that Mamu-B*098 samples lysophosphatidylethanolamine and lysophosphatidylcholine containing up to a C20 fatty acid in the ER. The X-ray crystal structures of Mamu-B*098 and Mamu-B*05104 complexed with lysophospholipids at high resolution revealed that the B and D pockets in the antigen-binding grooves of these MHC class I molecules accommodate these lipids through a monoacylglycerol moiety. Consistent with the capacity to bind cellular lipid ligands, these two MHC class I molecules did not require TAP function for cell-surface expression. Collectively, these results indicate that peptide- and lipopeptide-presenting MHC class I subsets use distinct sources of endogenous ligands.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Lisofosfolipídeos/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/imunologia , Lipoilação/imunologia , Lisofosfolipídeos/imunologia , Macaca mulatta , Peptídeos/química , Peptídeos/imunologia , Estrutura Quaternária de Proteína , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
2.
Plant Physiol ; 183(1): 80-95, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094307

RESUMO

RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor.


Assuntos
Frutas/genética , Frutas/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Alelos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/metabolismo , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Immunol ; 202(12): 3349-3358, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043477

RESUMO

Similar to host proteins, N-myristoylation occurs for viral proteins to dictate their pathological function. However, this lipid-modifying reaction creates a novel class of "lipopeptide" Ags targeted by host CTLs. The primate MHC class I-encoded protein, Mamu-B*098, was previously shown to bind N-myristoylated 5-mer peptides. Nevertheless, T cells exist that recognize even shorter lipopeptides, and much remains to be elucidated concerning the molecular mechanisms of lipopeptide presentation. We, in this study, demonstrate that the MHC class I allele, Mamu-B*05104, binds the N-myristoylated 4-mer peptide (C14-Gly-Gly-Ala-Ile) derived from the viral Nef protein for its presentation to CTLs. A phylogenetic tree analysis indicates that these classical MHC class I alleles are not closely associated; however, the high-resolution x-ray crystallographic analyses indicate that both molecules share lipid-binding structures defined by the exceptionally large, hydrophobic B pocket to accommodate the acylated glycine (G1) as an anchor. The C-terminal isoleucine (I4) of C14-Gly-Gly-Ala-Ile anchors at the F pocket, which is distinct from that of Mamu-B*098 and is virtually identical to that of the peptide-presenting MHC class I molecule, HLA-B51. The two central amino acid residues (G2 and A3) are only exposed externally for recognition by T cells, and the methyl side chain on A3 constitutes a major T cell epitope, underscoring that the epitopic diversity is highly limited for lipopeptides as compared with that for MHC class I-presented long peptides. These structural features suggest that lipopeptide-presenting MHC class I alleles comprise a distinct MHC class I subset that mediates an alternative pathway for CTL activation.


Assuntos
Autoantígenos/metabolismo , Epitopos de Linfócito T/metabolismo , Produtos do Gene nef/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lipopeptídeos/metabolismo , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno , Autoantígenos/química , Autoantígenos/imunologia , Cristalografia por Raios X , Epitopos de Linfócito T/imunologia , Produtos do Gene nef/química , Produtos do Gene nef/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Ativação Linfocitária , Ácido Mirístico/química , Peptídeos/química , Peptídeos/imunologia , Filogenia , Primatas
4.
Nat Plants ; 3(11): 866-874, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29085071

RESUMO

Tomato (Solanum lycopersicum) rin mutants completely fail to ripen: they do not produce red pigmentation, soften or induce an ethylene burst. Therefore, RIN has long been believed to function as a major regulator that is essential for the induction of ripening. Here, we provide evidence contradicting this concept of RIN function, showing induction of fruit ripening in the absence of RIN. A CRISPR/Cas9-mediated RIN-knockout mutation did not repress initiation of ripening and the mutant fruits showed moderate red colouring. Moreover, inactivation of the rin mutant allele partially restored the induction of ripening. Therefore, RIN is not required for the initiation of ripening and rin is not a null mutation, but rather is a gain-of-function mutation that produces a protein that actively represses ripening. Since the discovery of the rin mutant a half-century ago, many models have depicted RIN as indispensable for the induction of ripening; these models should be reconsidered in light of these results.


Assuntos
Frutas/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Domínio MADS/fisiologia , Proteínas de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Alelos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes Recessivos , Proteínas de Domínio MADS/genética , Mutação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica
5.
Plant Cell Physiol ; 56(6): 1097-106, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25746985

RESUMO

Pedicel abscission occurs widely in fruit-bearing plants to detach ripe, senescent or diseased organs, and regulation of abscission plays a substantial role in regulating yield and quality in fruit crops. In tomato, development of pedicel abscission zones (AZs) requires the MADS-box genes JOINTLESS (J), MACROCALYX (MC) and SlMBP21. In other plants, however, the involvement of MADS-box genes in pedicel abscission remains unclear. Here, we used genetic and biochemical methods to characterize apple J homologs in the context of the regulation of abscission in tomato. We identified three genes encoding two J homologs, MdJa and MdJb. Similarly to J, MdJa and MdJb interacted with MC and SlMBP21, but their interactions differed slightly: like J, MdJb formed a multimer (probably a tetramer) with SlMBP21; however, MdJa formed multimers to a lesser extent. Ectopic expression of MdJb in a J-deficient tomato mutant restored development of functional pedicel AZs, but ectopic expression of MdJa did not complement j mutants. Introduction of MdJb also restored expression of J-dependent genes in the mutant, such as genes for polygalacturonase, cellulase and AZ-specific transcription factors. These results suggest a potentially conserved mechanism of pedicel AZ development in apple and other plants, regulated by MADS-box transcription factors.


Assuntos
Frutas/metabolismo , Proteínas de Domínio MADS/metabolismo , Malus/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Regulação para Baixo/genética , Ensaio de Desvio de Mobilidade Eletroforética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Malus/genética , Malus/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
6.
Biosci Biotechnol Biochem ; 78(2): 231-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036675

RESUMO

Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.


Assuntos
Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Frutas/anatomia & histologia , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
7.
J Exp Bot ; 65(12): 3111-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744429

RESUMO

In plants, abscission removes senescent, injured, infected, or dispensable organs. Induced by auxin depletion and an ethylene burst, abscission requires pronounced changes in gene expression, including genes for cell separation enzymes and regulators of signal transduction and transcription. However, the understanding of the molecular basis of this regulation remains incomplete. To examine gene regulation in abscission, this study examined an ERF family transcription factor, tomato (Solanum lycopersicum) ETHYLENE-RESPONSIVE FACTOR 52 (SlERF52). SlERF52 is specifically expressed in pedicel abscission zones (AZs) and SlERF52 expression is suppressed in plants with impaired function of MACROCALYX and JOINTLESS, which regulate pedicel AZ development. RNA interference was used to knock down SlERF52 expression to show that SlERF52 functions in flower pedicel abscission. When treated with an abscission-inducing stimulus, the SlERF52-suppressed plants showed a significant delay in flower abscission compared with wild type. They also showed reduced upregulation of the genes for the abscission-associated enzymes cellulase and polygalacturonase. SlERF52 suppression also affected gene expression before the abscission stimulus, inhibiting the expression of pedicel AZ-specific transcription factor genes, such as the tomato WUSCHEL homologue, GOBLET, and Lateral suppressor, which may regulate meristematic activities in pedicel AZs. These results suggest that SlERF52 plays a pivotal role in transcriptional regulation in pedicel AZs at both pre-abscission and abscission stages.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Fator de Transcrição AP-2/genética , Sequência de Aminoácidos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fator de Transcrição AP-2/metabolismo
8.
Plant Cell ; 26(1): 89-101, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24415769

RESUMO

The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência de RNA
9.
Plant Mol Biol ; 82(4-5): 427-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677393

RESUMO

The tomato MADS-box transcription factor RIN acts as a master regulator of fruit ripening. Here, we identified MADS-box proteins that interact with RIN; we also provide evidence that these proteins act in the regulation of fruit ripening. We conducted a yeast two-hybrid screen of a cDNA library from ripening fruit, for genes encoding proteins that bind to RIN. The screen identified two MADS-box genes, FUL1 and FUL2 (previously called TDR4 and SlMBP7), both of which have high sequence similarity to Arabidopsis FRUITFULL. Expression analyses revealed that the FUL1 mRNA and FUL1 protein accumulate in a ripening-specific manner in tomato fruits and FUL2 mRNA and protein accumulate at the pre-ripening stage and throughout ripening. Biochemical analyses confirmed that FUL1 and FUL2 form heterodimers with RIN; this interaction required the FUL1 and FUL2 C-terminal domains. Also, the heterodimers bind to a typical target DNA motif for MADS-box proteins. Chromatin immunoprecipitation assays revealed that FUL1 and FUL2 bind to genomic sites that were previously identified as RIN-target sites, such as the promoter regions of ACS2, ACS4 and RIN. These findings suggest that RIN forms complexes with FUL1 and FUL2 and these complexes regulate expression of ripening-related genes. In addition to the functional redundancy between FUL1 and FUL2, we also found they have potentially divergent roles in transcriptional regulation, including a difference in genomic target sites.


Assuntos
Frutas/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
10.
BMC Plant Biol ; 13: 40, 2013 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-23497084

RESUMO

BACKGROUND: Detachment of plant organs occurs in abscission zones (AZs). During plant growth, the AZ forms, but does not develop further until the cells perceive abscission-promoting signals and initiate detachment. Upon signal perception, abscission initiates immediately; if there is no signal, abscission is not induced and the organ remains attached to the plant. However, little attention has been paid to the genes that maintain competence to respond to the abscission signal in the pre-abscission AZ. Recently, we found that the tomato (Solanum lycopersicum) transcription factors BLIND (Bl), GOBLET (GOB), Lateral suppressor (Ls) and a tomato WUSCHEL homologue (LeWUS) are expressed specifically in pre-abscission tissue, the anthesis pedicel AZs. To advance our understanding of abscission, here we profiled genome-wide gene expression in tomato flower pedicels at the pre-abscission stage. RESULTS: We examined the transcriptomes of three tomato flower pedicel regions, the AZ and flanking proximal- (Prox) and distal- (Dis) regions, and identified 89 genes that were preferentially expressed in the AZ compared to both Prox and Dis. These genes included several transcription factors that regulate apical or axillary shoot meristem activity. Also, genes associated with auxin activity were regulated in a Prox-Dis region-specific manner, suggesting that a gradient of auxin exists in the pedicel. A MADS-box gene affecting floral transition was preferentially expressed in the Prox region and other MADS-box genes for floral organ identification were preferentially expressed in Dis, implying that the morphologically similar Prox and Dis regions have distinct identities. We also analyzed the expression of known regulators; in anthesis pedicels, Bl, GOB, Ls and LeWUS were expressed in the vascular cells of the AZ region. However, after an abscission signal, Bl was up-regulated, but GOB, Ls and LeWUS were down-regulated, suggesting that Bl may be a positive regulator of abscission, but the others may be negative regulators. CONCLUSIONS: This study reveals region-specific gene expression in tomato flower pedicels at anthesis and identifies factors that may determine the physiological properties of the pre-abscission pedicel. The region-specific transcriptional regulators and genes for auxin activity identified here may prevent flower abscission in the absence of signal or establish competence to respond to the abscission signal.


Assuntos
Flores/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Transcriptoma/fisiologia
11.
Plant Cell ; 25(2): 371-86, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23386264

RESUMO

The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Sítios de Ligação , Carotenoides/metabolismo , Clorofila/metabolismo , Imunoprecipitação da Cromatina , Ciclopropanos/farmacologia , Etilenos/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Licopeno , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Planta ; 235(6): 1107-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22160566

RESUMO

The physiological and biochemical changes in fruit ripening produce key attributes of fruit quality including color, taste, aroma and texture. These changes are driven by the highly regulated and synchronized activation of a huge number of ripening-associated genes. In tomato (Solanum lycopersicum), a typical climacteric fruit, the MADS-box transcription factor RIN is one of the earliest-acting ripening regulators, required for both ethylene-dependent and ethylene-independent pathways. Although we previously identified several direct RIN targets, many additional targets remain unidentified, likely including key ripening-associated genes. Here, we report the identification of novel RIN targets by transcriptome and chromatin immunoprecipitation (ChIP) analyses. Transcriptome comparisons by microarray of wild-type and rin mutant tomatoes identified 342 positively regulated genes and 473 negatively regulated genes by RIN during ripening. Most of the positively regulated genes contained possible RIN-binding (CArG-box) sequences in their promoters. Subsequently, we selected six genes from the positively regulated genes and a ripening regulator gene, CNR, and assayed their promoters by quantitative ChIP-PCR to examine RIN binding. All of the seven genes, which are involved in cell wall modification, aroma and flavor development, pathogen defense and transcriptional regulation during ripening, are targets of RIN, suggesting that RIN may control multiple diverse ripening processes. In particular, RIN directly regulates the expression of the ripening-associated transcription factors, CNR, TDR4 and a GRAS family gene, providing an important clue to elucidate the complicated transcriptional cascade for fruit ripening.


Assuntos
Imunoprecipitação da Cromatina/métodos , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcriptoma/genética , Sequência de Bases , Sítios de Ligação , Etilenos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Estudos de Associação Genética , Solanum lycopersicum/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
13.
Biosci Biotechnol Biochem ; 75(1): 181-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21228470

RESUMO

Five carboxin-resistant mutants from Aspergillus oryzae were characterized by the sensitivities of their mycelial growth and succinate dehydrogenase (SDH) activity to carboxin and three related fungicides. Despite a significant resistance to carboxin, exhibited by all the mutants, their patterns of sensitivity to the other fungicides was distinct. This provides clues to the molecular interaction between SDH and these fungicides.


Assuntos
Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Carboxina/toxicidade , Farmacorresistência Fúngica/genética , Fungicidas Industriais/toxicidade , Mutação , Aspergillus oryzae/enzimologia , Micélio/efeitos dos fármacos , Micélio/enzimologia , Micélio/genética , Succinato Desidrogenase/metabolismo
14.
Fungal Genet Biol ; 46(3): 221-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19211038

RESUMO

Three reactions from hydroxyversicolorone to versicolorone, from versiconal hemiacetal acetate to versiconol acetate, and from versiconal to versiconol are involved in a metabolic grid in aflatoxin biosynthesis. This work demonstrated that the same reductase of Aspergillus parasiticus catalyzes the three reactions. The gene (named vrdA) encoding the reductase was cloned, and its sequence did not show homology to any regions in aflatoxin gene cluster. Its cDNA encoding a 38,566Da protein was separated by three introns in the genome. Deletion of the vrdA gene in A. parasiticus caused a significant decrease in enzyme activity, but did not affect aflatoxin productivity of the fungi. Although the vrdA gene was expressed in culture conditions conducive to aflatoxin production, it was expressed even in the aflR deletion mutant. These results suggest that the vrdA is not an aflatoxin biosynthesis gene, although it actually participates in aflatoxin biosynthesis in cells.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Antraquinonas/metabolismo , Aspergillus/genética , Sequência de Bases , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Íntrons , Dados de Sequência Molecular , Peso Molecular , Família Multigênica , Oxirredutases/química , Oxirredutases/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
15.
Fungal Genet Biol ; 46(1): 67-76, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18992352

RESUMO

Mutants exhibiting resistance to the fungicide, carboxin, were isolated from Aspergillus oryzae, and the mutations in the three gene loci, which encode succinate dehydrogenase (SDH) B, C, and D subunits, were identified to be independently responsible for the resistance. A structural model of the SDH revealed the different mechanisms that confer carboxin-resistance in different mutations. The mutant AosdhB gene (AosdhB(cxr)) was further examined for possible use as a transformant selection marker. After transformation with AosdhB(cxr), carboxin-resistant colonies appeared within 4 days of culture, and all of the examined colonies carried the transgene. Insertion analyses revealed that the AosdhB(cxr) gene was integrated into AosdhB locus via homologous recombination at high efficiency. Furthermore, AosdhB(cxr) functioned as a successful selection marker in a transformation experiment in Aspergillus parasiticus, suggesting that this transformation system can be used for Aspergillus species.


Assuntos
Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Carboxina/farmacologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Transformação Genética , Aspergillus oryzae/crescimento & desenvolvimento , Carboxina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Mutação , Succinato Desidrogenase/metabolismo
16.
Fungal Genet Biol ; 45(7): 1081-93, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18486503

RESUMO

The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene's function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G(1) (AFG(1)). LC-MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG(1). We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG(1) from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A.parasiticus strain significantly enhanced the AFG(1) formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG(1), which required NADPH or NADH, indicating that NADA is a precursor of AFG(1); in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme required for G-aflatoxin biosynthesis from OMST, and that it catalyzes the reaction from NADA to AFG(1), the last step in G-aflatoxin biosynthesis.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Aflatoxinas/análise , Aspergillus/química , Aspergillus/genética , Aspergillus/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pigmentos Biológicos/química , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Deleção de Sequência
17.
Nucleic Acids Res ; 33(6): 1924-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15809228

RESUMO

Mice deficient for Id2, a negative regulator of basic helix-loop-helix (bHLH) transcription factors, exhibit a defect in lactation due to impaired lobuloalveolar development during pregnancy, similar to the mice lacking the CCAAT enhancer binding protein (C/EBP) beta. Here, we show that Id2 is a direct target of C/EBPbeta. Translocation of C/EBPbeta into the nucleus, which was achieved by using a system utilizing the fusion protein between C/EBPbeta and the ligand-binding domain of the human estrogen receptor (C/EBPbeta-ERT), demonstrated the rapid induction of endogenous Id2 expression. In reporter assays, transactivation of the Id2 promoter by C/EBPbeta was observed and, among three potential C/EBPbeta binding sites found in the 2.3 kb Id2 promoter region, the most proximal element was responsible for the transactivation. Electrophoretic mobility shift assay (EMSA) identified this element as a core sequence to which C/EBPbeta binds. Chromatin immunoprecipitation (ChIP) furthermore confirmed the presence of C/EBPbeta in the Id2 promoter region. Northern blotting showed that Id2 expression in C/EBPbeta-deficient mammary glands was reduced at 10 days post coitus (d.p.c.), compared with that in wild-type mammary glands. Thus, our data demonstrate that Id2 is a direct target of C/EBPbeta and provide insight into molecular mechanisms underlying mammary gland development during pregnancy.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Glândulas Mamárias Animais/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Ativação Transcricional , Animais , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Proteínas de Ligação a DNA/biossíntese , Feminino , Proteína 2 Inibidora de Diferenciação , Camundongos , Células NIH 3T3 , Gravidez , Regiões Promotoras Genéticas , Proteínas Repressoras/biossíntese , Elementos de Resposta , Fatores de Transcrição/biossíntese
18.
FEBS Lett ; 551(1-3): 123-7, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12965216

RESUMO

Id2 and cyclin D1 share several biological activities, including inhibition of differentiation, stimulation of the G1-S transition in the cell cycle and stimulation of tumorigenesis. Mammary glands of Id2(-/-) mice display severely impaired lobulo-alveolar development during pregnancy, similarly to those of cyclin D1 null females. We investigated the functional relationship between Id2 and cyclin D1 in the mammary gland. Id2(-/-) mammary glands expressed a normal level of cyclin D1. No direct interaction of Id2 with cyclin D1 or its binding partner cdk4 was detected in mammalian two-hybrid assays. Ectopic expression of a cyclin D1 transgene did not rescue the mammary phenotype of Id2(-/-) mice. These results suggest that Id2 acts downstream or independently of cyclin D1 in the control of mammary cell proliferation during pregnancy.


Assuntos
Ciclina D1/metabolismo , Proteínas de Ligação a DNA/fisiologia , Glândulas Mamárias Animais/metabolismo , Proteínas Repressoras , Fatores de Transcrição/fisiologia , Animais , Ciclina D1/genética , Ciclinas/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Proteína 2 Inibidora de Diferenciação , Glândulas Mamárias Animais/anatomia & histologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Gravidez , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...