Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16664, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794094

RESUMO

Tunas, lamnid sharks, modern whales, and derived ichthyosaurs converged on the thunniform body plan, with a fusiform body, lunate caudal fin, compressed peduncle, and peduncle joint. This evolutionary convergence has been studied for a long time but little is known about whether all four clades share any skeletal characteristics. Comparisons of vertebral centrum dimensions along the body reveal that the four clades indeed share three skeletal characteristics (e.g., thick vertebral column for its length), while an additional feature is shared by cetaceans, lamnid sharks, and ichthyosaurs and two more by lamnid sharks and ichthyosaurs alone. These vertebral features are all related to the mechanics of thunniform swimming through contributions to posterior concentration of tail-stem oscillation, tail stem stabilization, peduncle joint flexibility, and caudal fin angle fixation. Quantitative identifications of these features in fossil vertebrates would allow an inference of whether they were a thunniform swimmer. Based on measurements in the literature, mosasaurs lacked these features and were probably not thunniform swimmers, whereas a Cretaceous lamniform shark had a mosaic of thunniform and non-thunniform features. The evolution of thunniform swimming appears to be linked with the evolution of prey types and, in part, niche availability through geologic time.


Assuntos
Tubarões , Atum , Animais , Baleias , Ecossistema , Natação
2.
Proc Natl Acad Sci U S A ; 120(27): e2218153120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364100

RESUMO

The evolution of the extinct megatooth shark, Otodus megalodon, and its close phylogenetic relatives remains enigmatic. A central question persists regarding the thermophysiological origins of these large predatory sharks through geologic time, including whether O. megalodon was ectothermic or endothermic (including regional endothermy), and whether its thermophysiology could help to explain the iconic shark's gigantism and eventual demise during the Pliocene. To address these uncertainties, we present unique geochemical evidence for thermoregulation in O. megalodon from both clumped isotope paleothermometry and phosphate oxygen isotopes. Our results show that O. megalodon had an overall warmer body temperature compared with its ambient environment and other coexisting shark species, providing quantitative and experimental support for recent biophysical modeling studies that suggest endothermy was one of the key drivers for gigantism in O. megalodon and other lamniform sharks. The gigantic body size with high metabolic costs of having high body temperatures may have contributed to the vulnerability of Otodus species to extinction when compared to other sympatric sharks that survived the Pliocene epoch.


Assuntos
Gigantismo , Tubarões , Animais , Tubarões/fisiologia , Filogenia , Regulação da Temperatura Corporal/fisiologia , Tamanho Corporal
3.
J Morphol ; 284(5): e21585, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059594

RESUMO

Lamniform sharks are one of the more conspicuous groups of elasmobranchs, including several emblematic taxa as the white shark. Although their monophyly is well supported, the interrelationships of taxa within Lamniformes remains controversial because of the conflict among various previous molecular-based and morphology-based phylogenetic hypotheses. In this study, we use 31 characters related to the appendicular skeleton of lamniforms and demonstrate their ability to resolve the systematic interrelationships within this shark order. In particular, the new additional skeletal characters resolve all polytomies that were present in previous morphology-based phylogenetic analyses of lamniforms. Our study demonstrates the strength of incorporating new morphological data for phylogenetic reconstructions.


Assuntos
Elasmobrânquios , Tubarões , Animais , Filogenia , Tubarões/anatomia & histologia , Osso e Ossos
4.
Anat Rec (Hoboken) ; 306(2): 311-325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36059141

RESUMO

Jaw mechanics of lamniform sharks were examined three-dimensionally to analyze the variability in jaw shape and the evolution of the jaw system based on the extant macrophagous species. Three-dimensional lever analysis was applied to lamniform jaws to calculate bite force at each tooth relative to maximum input force from jaw adductor muscles for interspecific comparison of efficiency in lamniform jaws. When total input force from the jaw adductor muscles on both working and balancing sides of the skull is considered, input force varies along the jaw because the contribution by balancing side muscles is not constant. The phylogenetically basal-most species, Mitsukurina owstoni, has the least efficient jaws due to posteriorly positioned jaw adductor muscles. Our study shows that the higher efficiency of jaws is regarded as apomorphic in lamniform phylogeny owing to the anterior extension of jaw adductor muscles relative to M. owstoni and a relative decrease in jaw length in relation to width seen in some species, both of which increase leverage. Differences in the efficiency of jaws among derived genera or species are due to the morphology of their jaws. The relationship between calculated bite force relative to maximum input force and tooth morphology indicates low relative bite forces being exerted at anteriorly located, narrow, piercing teeth, whereas high relative bite forces at posteriorly located, broad, cutting, or crushing-type teeth. As a result, the biting pressure during feeding is maintained throughout the tooth series.


Assuntos
Tubarões , Dente , Animais , Tubarões/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Dente/anatomia & histologia , Crânio , Filogenia , Força de Mordida , Fenômenos Biomecânicos
5.
PeerJ ; 10: e14190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285333

RESUMO

The Niubu fossil locality in Chiayi County, southern Taiwan is best known for its rich early Pleistocene marine fossils that provide insights into the poorly understood past diversity in the area. The elasmobranch teeth at this locality have been collected for decades by the locals, but have not been formally described and have received little attention. Here, we describe three museum collections of elasmobranch teeth (n = 697) from the Liuchungchi Formation (1.90-1.35 Ma) sampled at the Niubu locality, with an aim of constructing a more comprehensive view of the past fish fauna in the subtropical West Pacific. The assemblage is composed of 20 taxa belonging to nine families and is dominated by Carcharhinus and Carcharodon. The occurrence of †Hemipristis serra is of particular importance because it is the first Pleistocene record in the area. We highlight high numbers of large Carcharodon carcharias teeth in our sample correlating to body lengths exceeding 4 m, along with the diverse fossil elasmobranchs, suggesting that a once rich and thriving marine ecosystem in an inshore to offshore shallow-water environment during the early Pleistocene in Taiwan.


Assuntos
Ecossistema , Tubarões , Animais , Taiwan , Fósseis , Peixes
6.
Sci Adv ; 8(25): eabl6529, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731884

RESUMO

Trophic position is a fundamental characteristic of animals, yet it is unknown in many extinct species. In this study, we ground-truth the 15N/14N ratio of enameloid-bound organic matter (δ15NEB) as a trophic level proxy by comparison to dentin collagen δ15N and apply this method to the fossil record to reconstruct the trophic level of the megatooth sharks (genus Otodus). These sharks evolved in the Cenozoic, culminating in Otodus megalodon, a shark with a maximum body size of more than 15 m, which went extinct 3.5 million years ago. Very high δ15NEB values (22.9 ± 4.4‰) of O. megalodon from the Miocene and Pliocene show that it occupied a higher trophic level than is known for any marine species, extinct or extant. δ15NEB also indicates a dietary shift in sharks of the megatooth lineage as they evolved toward the gigantic O. megalodon, with the highest trophic level apparently reached earlier than peak size.

7.
Nat Commun ; 13(1): 2980, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641494

RESUMO

Diet is a crucial trait of an animal's lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ66Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark (Otodus megalodon) and the great white shark (Carcharodon carcharias). We reveal that dietary δ66Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species' trophic level. We observe significant δ66Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark.


Assuntos
Ecossistema , Tubarões , Animais , Ecologia , Estado Nutricional , Isótopos de Zinco
8.
J Fish Biol ; 98(2): 445-455, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33058250

RESUMO

Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.


Assuntos
Elasmobrânquios/classificação , Fósseis , Animais , Evolução Biológica , Tamanho Corporal/fisiologia , Ecossistema , Elasmobrânquios/anatomia & histologia , Extinção Biológica , Oceanos e Mares
9.
Zoology (Jena) ; 140: 125799, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413674

RESUMO

Sharks are among the oldest vertebrate lineages in which their success has been attributed to their diversity in body shape and locomotor design. In this study, we investigated the diversity of body forms in extant sharks using landmark-based geometric morphometric analyses on nearly all the known (ca. 470) extant sharks. We ran three different analyses: the 'full body,' 'precaudal body,' and 'caudal fin' analyses. Our study suggests that there are two basic body forms in sharks, a 'shallow-bodied' form (Group A) and 'deep-bodied' form (Group B), where all sharks essentially have one basic caudal fin design of a heterocercal tail despite some specializations. We found that swimming modes in sharks are highly correlated with body forms where Group A sharks are predominantly anguilliform swimmers and Group B sharks are represented by carangiform and thunniform swimmers. The majority of Group A sharks are found to be benthic whereas pelagic forms are relatively common among Group B sharks. Each of the two superorders of sharks, Squalomorphii and Galeomorphii, must have gone through complex evolutionary history where each superorder contains both Group A sharks and Group B sharks, possibly involving parallel evolution from one group to the other or at least one episode of evolutionary reversal.


Assuntos
Filogenia , Tubarões/anatomia & histologia , Animais , Ecossistema , Comportamento Alimentar , Tubarões/genética , Tubarões/fisiologia
10.
Sci Rep ; 10(1): 8502, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444686

RESUMO

Shark nurseries are essential habitats for shark survival. Notwithstanding the rich fossil record of the modern great white shark (Carcharodon carcharias, GWS), its use of nursery areas in the fossil record has never been assessed before. Here, we analysed the fossil record of the GWS from three South American Pliocene localities, assessed body size distributions and applied previously established criteria to identify palaeo-nurseries. We found that juveniles dominate the Coquimbo locality (Chile), whereas subadults and adults characterize Pisco (Peru) and Caldera (Chile), respectively. These results, summed to the paleontological and paleoenvironmental record of the region, suggest that Coquimbo represents the first nursery area for the GWS in the fossil record. Our findings demonstrate that one of the top predators in today's oceans has used nursery areas for millions of years, highlighting their importance as essential habitats for shark survival in deep time.


Assuntos
Tamanho Corporal , Ecossistema , Fósseis , Tubarões/fisiologia , Dente/anatomia & histologia , Animais , Feminino , Masculino , Tubarões/anatomia & histologia
11.
Evolution ; 73(3): 588-599, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30675721

RESUMO

Through elasmobranch (sharks and rays) evolutionary history, gigantism evolved multiple times in phylogenetically distant species, some of which are now extinct. Interestingly, the world's largest elasmobranchs display two specializations found never to overlap: filter feeding and mesothermy. The contrasting lifestyles of elasmobranch giants provide an ideal case study to elucidate the evolutionary pathways leading to gigantism in the oceans. Here, we applied a phylogenetic approach to a global dataset of 459 taxa to study the evolution of elasmobranch gigantism. We found that filter feeders and mesotherms deviate from general relationships between trophic level and body size, and exhibit significantly larger sizes than ectothermic-macropredators. We confirm that filter feeding arose multiple times during the Paleogene, and suggest the possibility of a single origin of mesothermy in the Cretaceous. Together, our results elucidate two main evolutionary pathways that enable gigantism: mesothermic and filter feeding. These pathways were followed by ancestrally large clades and facilitated extreme sizes through specializations for enhancing prey intake. Although a negligible percentage of ectothermic-macropredators reach gigantic sizes, these species lack such specializations and are correspondingly constrained to the lower limits of gigantism. Importantly, the very adaptive strategies that enabled the evolution of the largest sharks can also confer high extinction susceptibility.


Assuntos
Evolução Biológica , Tamanho Corporal , Elasmobrânquios/anatomia & histologia , Elasmobrânquios/fisiologia , Animais , Dieta , Tubarões/anatomia & histologia , Tubarões/fisiologia
12.
Zootaxa ; 4461(1): 118-126, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30314100

RESUMO

Elasmobranchii is a clade of chondrichthyans (cartilaginous fishes) that comprises sharks, skates and rays represented today by approximately 1,200 species. Chondrichthyans have a long evolutionary history dating back to the Late Ordovician (ca. 450 million years ago [Mya]) based on isolated dermal denticles (Janvier 1996). Other remains such as articulated skeletons and teeth are known from the Lower Devonian (ca. 410 Mya: Mader 1986; Miller et al. 2003). The fossil record of modern elasmobranchs (Neoselachii) can be traced back to the Early Permian (ca. 290 Mya) and is represented by isolated teeth (Ivanov 2005), with fossils of crown group sharks and rays appearing in Lower Jurassic (ca. 200 Mya) rocks (e.g., Cappetta 2012). Since their appearance in the geological record, elasmobranchs are mainly represented by isolated teeth, whereas articulated skeletons are very rare and restricted to a small number of fossil localities (e.g., Cappetta 2012). The scarcity of skeletal remains in their fossil record is due to their poorly mineralized cartilaginous skeleton that requires special taphonomical conditions to be preserved. Elasmobranch teeth, in contrast, are composed of highly mineralized tissues (hydroxyapatite) that have a strong preservation potential (Shimada 2006). In addition, elasmobranchs replace their teeth continuously over the course of their life span (polyphyodonty) and therefore shed thousands of teeth in their lifetime (Reif et al. 1978; Schnetz et al. 2016) leading to large numbers of potential fossils. These morphologically highly diverse isolated teeth constitute much of the rich fossil record of elasmobranchs, and largely form the basis of our understanding of elasmobranch diversity and evolution through geological time.


Assuntos
Peixes , Filogenia , Animais , Evolução Biológica , Fósseis , Dente
13.
Zootaxa ; 4161(2): 237-51, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27615926

RESUMO

We redescribe an extinct river shark, Glyphis pagoda (Noetling), on the basis of 20 teeth newly collected from three different Miocene localities in Myanmar. One locality is a nearshore marine deposit (Obogon Formation) whereas the other two localities represent terrestrial freshwater deposits (Irrawaddy sediments), suggesting that G. pagoda from the Irrawaddy sediments was capable of tolerating low salinity like the extant Glyphis. Glyphis pagoda likely reached up to at least 185 cm in total body length and was probably piscivorous. The fossil species occurs in rocks of Myanmar and eastern and western India and stratigraphically ranges at least from the Lower Miocene (Aquitanian) to the lower Upper Miocene (mid-Tortonian). It has been classified under at least eight other genera to date, along with numerous taxonomic synonyms largely stemming from the lack of understanding of the heterodonty in extant Glyphis in the original description. Our literature review suggests that known Miocene shark faunas, particularly those in India, are manifested with unreliable taxonomic identifications and outdated classifications that warrant the need for a comprehensive taxonomic review in order to evaluate the evolutionary history and diversity pattern of Miocene shark faunas. The genus Glyphis has a roughly 23-million-year-long history, and its success may be related to the evolution of its low salinity tolerance. While extant Glyphis spp. are considered to be particularly vulnerable to habitat degradation and overfishing, the fossil record of G. pagoda provides renewed perspective on the natural history of the genus that can be taken into further consideration for conservation biology of the extant forms.


Assuntos
Fósseis , Tubarões/anatomia & histologia , Tubarões/classificação , Animais , Mianmar , Rios
14.
Anat Rec (Hoboken) ; 296(3): 433-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23381874

RESUMO

Lamniformes is a small shark group consisting of 15 extant species with remarkably diverse lifestyles and a wide range in heterocercal tail morphology. The caudal fin morphology must be related to their lifestyle because the tail is a main locomotive structure in sharks, but such relationships have remained largely uninvestigated. Here, the morphology-lifestyle relationship in lamniforms is examined through phylogenetic mapping. This study suggests that, within Lamniformes, caudal fins with a more horizontally directed curvature of the vertebral column are plesiomorphic, whereas those with a large dorsally directed curvature of the vertebral column are apomorphic. It also shows that caudal fins with posteriorly directed hypochordal rays are plesiomorphic, and that those with ventrally directed hypochordal rays are apomorphic within Lamniformes. Four basic caudal fin types are recognized in lamniforms on the basis of these skeletal variables in which one corollary is that the evolution of external morphology of caudal fin does not necessarily correspond to the evolution of its skeletal anatomy. This study also demonstrates that specific lifestyles seen in different lamniforms are indeed correlative with different caudal fin types in which a less asymmetrical heterocercal tail is a derived feature in lamniforms that evolved for fast swimming to capture fast swimming prey.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Evolução Biológica , Tubarões/anatomia & histologia , Cauda/anatomia & histologia , Adaptação Fisiológica , Nadadeiras de Animais/diagnóstico por imagem , Nadadeiras de Animais/fisiologia , Animais , Osso e Ossos/anatomia & histologia , Estilo de Vida , Filogenia , Comportamento Predatório , Radiografia , Tubarões/classificação , Tubarões/fisiologia , Especificidade da Espécie , Natação , Cauda/diagnóstico por imagem , Cauda/fisiologia
15.
Science ; 327(5968): 990-3, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20167784

RESUMO

Large-bodied suspension feeders (planktivores), which include the most massive animals to have ever lived, are conspicuously absent from Mesozoic marine environments. The only clear representatives of this trophic guild in the Mesozoic have been an enigmatic and apparently short-lived Jurassic group of extinct pachycormid fishes. Here, we report several new examples of these giant bony fishes from Asia, Europe, and North America. These fossils provide the first detailed anatomical information on this poorly understood clade and extend its range from the lower Middle Jurassic to the end of the Cretaceous, showing that this group persisted for more than 100 million years. Modern large-bodied, planktivorous vertebrates diversified after the extinction of pachycormids at the Cretaceous-Paleogene boundary, which is consistent with an opportunistic refilling of vacated ecospace.


Assuntos
Ecossistema , Peixes , Plâncton , Água do Mar , Animais , Ásia , Evolução Biológica , Tamanho Corporal , Osso e Ossos/anatomia & histologia , Europa (Continente) , Extinção Biológica , Comportamento Alimentar , Peixes/anatomia & histologia , Peixes/classificação , Peixes/fisiologia , Fósseis , Arcada Osseodentária/anatomia & histologia , América do Norte , Oceanos e Mares , Filogenia , Crânio/anatomia & histologia , Tempo
16.
Anat Rec (Hoboken) ; 292(6): 813-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19462448

RESUMO

Using computed tomography, we discovered labial cartilages (splanchnocranial components) in an enigmatic lamniform shark, Odontaspis ferox (smalltooth sandtiger). We demonstrate that the presence of labial cartilages is plesiomorphic in Lamniformes, affirming that their "reduction" cannot be used as a synapomorphy for the order. Rather, their loss occurred through lamniform phylogeny.


Assuntos
Cartilagem/anatomia & histologia , Filogenia , Tubarões/anatomia & histologia , Animais , Evolução Molecular
17.
J Morphol ; 251(1): 38-72, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11746467

RESUMO

The dentitions of lamniform sharks are said to exhibit a unique heterodonty called the "lamnoid tooth pattern." The presence of an inflated hollow "dental bulla" on each jaw cartilage allows the recognition of homologous teeth across most modern macrophagous lamniforms based on topographic correspondence through the "similarity test." In most macrophagous lamniforms, three tooth rows are supported by the upper dental bulla: two rows of large anterior teeth followed by a row of small intermediate teeth. The lower tooth row occluding between the two rows of upper anterior teeth is the first lower anterior tooth row. Like the first and second lower anterior tooth rows, the third lower tooth row is supported by the dental bulla and may be called the first lower intermediate tooth row. The lower intermediate tooth row occludes between the first and second upper lateral tooth rows situated distal to the upper dental bulla, and the rest of the upper and lower tooth rows, all called lateral tooth rows, occlude alternately. Tooth symmetry cannot be used to identify their dental homology. The presence of dental bullae can be regarded as a synapomorphy of Lamniformes and this character is more definable than the "lamnoid tooth pattern." The formation of the tooth pattern appears to be related to the evolution of dental bullae. This study constitutes the first demonstration of supraspecific tooth-to-tooth dental homologies in nonmammalian vertebrates.


Assuntos
Dentição , Tubarões/anatomia & histologia , Animais , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...