Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(3): 47, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366081

RESUMO

Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética
2.
Microbiol Spectr ; 10(6): e0259522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36227090

RESUMO

Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Linfoma , Bovinos , Humanos , Animais , Ovinos , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/diagnóstico , Provírus/genética , Integração Viral
3.
Vet Microbiol ; 254: 108976, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33453627

RESUMO

Diarrhea is a major cause of death in calves and this is linked directly to economic loss in the cattle industry. Fermented milk replacer (FMR) has been used widely in clinical settings for calf feeding to improve its health and growth. However, the protective efficacy of FMR on calf diarrhea remains unclear. In this study, we verified the preventive effects of FMR feeding on calf diarrhea using an experimental infection model of bovine rotavirus (BRV) in newborn calves and a field study in dairy farms with calf diarrhea. In addition, we evaluated the protective efficacy of lactic acid bacteria-supplemented milk replacer (LAB-MR) in an experimental infection model. In the experimental infection, calves fed FMR or high-concentrated LAB-MR had diarrhea, but the water content of feces was lower and more stable than that of calves fed normal milk replacer. The amount of milk intake also decreased temporarily, but recovered immediately in the FMR- and LAB-MR-fed calves. As compared with the control calves, FMR- or LAB-MR-fed calves showed less severe or reduced histopathological lesions of enteritis in the intestinal mucosa. In a field study using dairy calves, FMR feeding significantly reduced the incidence of enteritis, mortality from enteritis, duration of a series of treatment for enteritis, number of consultations, and cost of medical care for the disease. These results suggest that feeding milk replacer-based probiotics to calves reduces the severity of diarrhea and tissue damage to the intestinal tract caused by BRV infection and provides significant clinical benefits to the prevention and treatment of calf diarrhea.


Assuntos
Ração Animal/análise , Diarreia/prevenção & controle , Diarreia/veterinária , Enterite/veterinária , Leite , Probióticos/administração & dosagem , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/veterinária , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Produtos Fermentados do Leite , Diarreia/terapia , Suplementos Nutricionais , Enterite/prevenção & controle , Feminino , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Masculino , Gravidez , Probióticos/uso terapêutico , Infecções por Rotavirus/terapia , Desmame
4.
Front Vet Sci ; 7: 609443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344537

RESUMO

Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-ß and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-ß1, and M. bovis infection induced TGF-ß1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-ß1 on bovine immune cells. Treatment with TGF-ß1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-ß1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...