Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949277

RESUMO

This study explores various models of semiconductor dielectric functions, with a specific emphasis on the large wavenumber spectrum and the derivation of the screened exchange interaction. Particularly, we discuss the short-range effect of the screened exchange potential. Our investigation reveals that the short-range effect originating from the high wavenumber spectrum is contingent upon the dielectric constant of the targeted system. To incorporate dielectric-dependent behaviors concerning the short-range aspect into the dielectric density functional theory (DFT) framework, we utilize the local Slater term and the Yukawa-type term, adjusting the ratio between these terms based on the dielectric constant. Additionally, we demonstrate the efficacy of the time-dependent dielectric DFT method in accurately characterizing the electronic structure of excited states in dyes and functional molecules. Several theoretical approaches have incorporated parameters dependent on the system to elucidate short-range exchange interactions. Our theoretical analysis and discussions will be useful for those studies.

2.
J Phys Chem Lett ; 14(29): 6695-6701, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37466615

RESUMO

Extensive research has been recently conducted to improve the power conversion efficiency (PCE) of perovskite solar cells. However, the charge carriers are easily trapped by the defect sites located at the interface between the perovskite layer and the electrode, which decreases the PCE. To reduce such defect sites, the passivation technique is frequently employed to coat small molecules on the perovskite surface during the manufacturing process. To clarify the passivation mechanism from a molecular viewpoint, we performed density functional theory calculations to target Pb-free Sn perovskites (CH3NH3SnI3). We investigated the passivation effect of Lewis base/acid molecules, such as ethylene diamine (EDA) and iodopentafluorobenzene (IPFB), and discussed behaviors of the defect levels within the bandgap as they have strong negative impacts on the PCE. The adsorption of EDA/IPFB on the Sn perovskite surface can remove the defect levels from the bandgap. Furthermore, we discuss the importance of interactions with molecular orbitals.

3.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37232435

RESUMO

We studied the stability of a system consisting of a positron (e+) and two lithium anions, [Li-; e+; Li-], using first-principles quantum Monte Carlo calculations combined with the multi-component molecular orbital method. While diatomic lithium molecular dianions Li22- are unstable, we found that its positronic complex can form a bound state with respect to the lowest energy decay into the dissociation channel Li2- and a positronium (Ps). The [Li-; e+; Li-] system has the minimum energy at the internuclear distance of ∼3 Å, which is close to the equilibrium internuclear distance of Li2-. At the minimum energy structure both an excess electron and a positron are delocalized as orbiting around the Li2- molecular anion core. A dominant feature of such a positron bonding structure is described as the Ps fraction bound to Li2-, unlike the covalent positron bonding scheme for the electronically isovalent [H-; e+; H-] complex.

4.
Nanoscale ; 15(11): 5201-5208, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36789780

RESUMO

Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.

5.
J Phys Chem B ; 127(1): 328-334, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542848

RESUMO

Gaining insight into the encapsulation mechanism is important for controlling the encapsulation rate toward the self-assembly of gear-shaped amphiphile molecules (GSAs). To this aim, we conducted molecular dynamics (MD) simulations for three different hexameric nanocubes (1612+, 2612+, and 3612+) of GSAs (12+, 22+, and 32+, respectively) to elucidate the quantitative structure-property relationship between the stability of the nanocubes and the rate of encapsulation of a guest molecule. The 12+, 22+, and 32+ monomers differ from each other in the number of methyl groups, having three, zero, and two methyl groups, respectively. The 3612+ hexamer has methyl groups only on the equatorial region. In the cases of the simulations of 1612+ and 3612+, the cubic structures are maintained due to a tight triple-π stacking around the equator region. Meanwhile, 2612+ deforms easily due to the occurrence of a large fluctuation. These results indicate that the methyl groups on the equator are crucial to stabilize the nanocubes. The encapsulation of an iodide ion as a guest molecule is revealed to occur through the pole region via a gap that is easily formed in the nanocubes without methyl groups on the poles. Our study clearly suggests that self-assembled nanocubes can be designed to attain a specific stability and encapsulation efficiency simultaneously.

6.
Phys Chem Chem Phys ; 25(1): 625-632, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484429

RESUMO

Although positron binding to van der Waals intermolecularly bonded clusters of non-polar carbon dioxide (CO2) molecules was experimentally suggested, the positron binding feature has been poorly understood. We investigated positron affinities (PAs) by means of multi-component configuration interaction calculations for various structures of (CO2)n (n = 1-5) obtained by the single-component artificial force induced reaction (SC-AFIR) method. Our calculations showed that CO2 monomers do not bind a positron, whereas positron affinities for clusters tend to increase with an increase in the cluster size. Our regression analyses for determining PAs with electrostatic and structural properties of conformations revealed a significant conformer effect due to which structural characteristics such as flatness may have a strong influence on PA for loosely bound positronic complexes of (CO2)n.

7.
RSC Adv ; 12(53): 34685-34693, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36545599

RESUMO

Thiazolothiazole (TTz)-based materials have been attracting much attention because of their widespread applications. In this paper, we discuss the excited electronic behaviors of asymmetric TTz dyes in solvents based on the time-dependent dielectric density functional theory method. Based on dipole moment and charge distribution (population) analyses, we discuss large intramolecular electron transfers, which are triggered by photon excitations, toward the acceptor part of dyes. In addition, we explore the contributions of geometrical changes and solvent reorientations (reorganizations) to the solvatofluorochromic phenomena based on a decomposition technique. The decomposition analysis shows that the solvent reorientation effect mainly contributes to changes in the fluorescent spectra in response to solvents.

8.
Phys Chem Chem Phys ; 24(43): 26898-26907, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317714

RESUMO

We studied the positron binding and annihilation of hydrogen bonded binary molecular clusters containing small inorganic molecules such as water, hydrogen fluoride, ammonia, hydrogen sulfide, hydrogen chloride, and phosphine, using first-principles calculation. While unimolecular systems of these species mostly exhibit no or very small positron binding energies (positron affinities), we found that all of their hydrogen bonding clusters have greater positive positron affinities. The permanent dipole moment enhanced by the formation of the intermolecular hydrogen bond acts as a dominant parameter to bind a positron for a given proton donor, whereas it is insufficient for reproducing the dependence of the positron affinity on substitutions of the proton donor. By multiple regression analyses with inherent properties of the clusters, we found a reasonable model with additional effective parameters represented by, particularly, the number of hydrogen atoms free from the hydrogen bond. By density analyses for the single-particle and electron-positron collision probabilities, we revealed that these effective parameters are associated with the electronic structure changes induced by the hydrogen bond and positron binding, which have important roles to enhance the electron-positron contact densities due to the proton-screening effect.

9.
RSC Adv ; 12(30): 19548-19553, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865602

RESUMO

In recent years, supramolecular cocrystals containing organic donors and acceptors have been explored as active components in organic field-effect transistors (FETs). Herein, we report the synthesis of novel single-cocrystal nanoribbons with ambipolar charge transport characteristics from C70 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP) in a 3 : 2 ratio. The C70/3,5-TPP nanoribbons exhibited a new strong absorption band in the near-infrared region, indicating the presence of charge-transfer interactions between C70 and 3,5-TPP in the cocrystals. We elucidated the mechanism of the charge-transport properties of the nanoribbons using photoemission yield spectroscopy in air and theoretical calculations. A strong interaction between porphyrins in the one-dimensional porphyrin chains formed in C70/3,5-TPP nanoribbons, which was confirmed by single-crystal X-ray diffraction, plays a crucial role in their hole transport properties.

10.
ACS Omega ; 7(12): 10372-10381, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382271

RESUMO

To improve virtual screening for drug discovery, we present a collaborative approach between explainable artificial intelligence (AI) and simplified chemical interaction scores to efficiently search for active ligands bound to the target receptor. In particular, we focus on cyclin-dependent kinase 2 (CDK2), which is well known as a cancer target protein. Docking simulation alone is insufficient to distinguish active ligands from decoy molecules. To identify active ligands, in this paper, machine learning is employed together with scoring functions that simplify the screened Coulomb and Lennard-Jones interactions between the ligands and residues of the target receptor. We demonstrate that these simplified interaction scores can significantly improve the classification ability of machine learning models. We also demonstrate that explainable AI together with the simplified scoring method can highlight the important residues of CDK2 for recognizing active ligands.

11.
J Phys Chem A ; 126(1): 155-163, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34981930

RESUMO

Recently, deuterium-labeled drugs, such as deutetrabenazine, have attracted considerable attention. Consequently, understanding the reaction mechanisms of deuterium-labeled drugs is crucial, both fundamentally and for real applications. To understand the mechanisms of H- and D-transfer reactions, in this study, we used deuterated anisole as a deutetrabenazine model and computationally considered the nuclear quantum effects of protons, deuterons, and electrons. We demonstrated that geometrical differences exist in the partially and fully deuterated methoxy groups and hydrogen-bonded structures of intermediates and transition states due to the H/D isotope effect. The observed geometrical features and electronic structures are ascribable to the different nuclear quantum effects of protons and deuterons. Primary and secondary kinetic isotope effects (KIEs) were calculated for H- and D-transfer reactions from deuterated and undeuterated anisole, with the calculated primary KIEs in good agreement with the corresponding experimental data. These results reveal that the nuclear quantum effects of protons and deuterons need to be considered when analyzing the reaction mechanisms of H- and D-transfer reactions and that a theoretical approach that directly includes nuclear quantum effects is a powerful tool for the analysis of H/D isotope effects in H- and D-transfer reactions.


Assuntos
Hidrogênio , Preparações Farmacêuticas , Anisóis , Deutério , Cinética , Modelos Teóricos
12.
ACS Omega ; 6(44): 29449-29458, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34778617

RESUMO

Despite the fact that the positron annihilation has been used in biomedical applications, the detailed mechanism of the positron annihilation on biological molecules remains poorly understood so far. In this work, we investigated the positron binding and positron annihilation properties for both global minimum and hydrogen-bonded structures of 20 amino acid molecules using the multicomponent molecular orbital method. By regression analysis, we confirmed that positron affinity can increase with an increase of the permanent dipole moment of the parent amino acids as reported in previous studies, while the annihilation rate linearly increases with respect to the square root of positron affinity. By the one-particle property analyses for probabilities of electron-positron contacts, we found that delocalization characteristics of both electrons and positrons play key roles to enhance the positron annihilation rate arising from both the valence electrons in σ- and π-type molecular orbitals from 2p atomic orbitals but not from the highest occupied molecular orbital electrons, particularly for comparatively weakly bound positronic amino acid systems.

13.
Phys Chem Chem Phys ; 23(38): 21512-21520, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34515275

RESUMO

The positronic bound state for the non-polar carbon disulfide (CS2) has been experimentally identified, although previous theoretical investigations, which were dedicated to studying the positronic CS2 monomer, could not reasonably reproduce the experimentally measured positron affinity. In the present study, we performed analysis of the vibrational averaged positron affinity for the positronic CS2 dimer, [C2S4; e+], using the Hartree-Fock and configuration interaction levels of the multi-component molecular orbital method combined with the self-consistent field level of the vibrational variational Monte Carlo method. We demonstrated that the equilibrium structure of the non-polar C2S4 can have the positronic bound state with a positron affinity of about 46.18 meV in the configuration interaction level, while this is 0 meV in the Hartree-Fock level. Furthermore, by taking into account the vibrational effect, we succeeded in reproducing the resonant positron kinetic energies lying close to the experimental value, where the vibrational averaged positron affinity becomes greater with an increased dipole moment and dipole polarizability. We also showed possible mechanisms to effectively enhance the resonant positron capture for [C2S4; e+], associated with both the infrared active and infrared inactive vibrational modes.

14.
Phys Chem Chem Phys ; 23(37): 21078-21086, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523637

RESUMO

In this work, the excitation energies of asymmetric thiazolothizaole (TTz) dye molecules have been theoretically studied using dielectric-dependent density functional theory (DFT). In the dielectric-dependent DFT approach, the ratio (fraction) of the nonlocal Hartree exchange term incorporated into the DFT exchange-correlation functional is a system-dependent parameter, which is inversely proportional to the dielectric constant of the target material. The dielectric-dependent DFT method is closely related to the Coulomb hole and screened exchange (COHSEX) approximation in the GW method and therefore has been applied to crystalline systems with periodic boundary conditions, such as semiconductors and inorganic materials. By focusing on the solvatofluorochromic phenomena of asymmetric TTz dyes, we show that excitation energy calculations obtained from the dielectric-dependent DFT method can reproduce the corresponding experimental UV-vis absorption and emission spectra of dyes in solvents.

15.
Langmuir ; 37(20): 6292-6300, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33956461

RESUMO

Diamond-like carbon (DLC) has recently attracted much attention as a promising solid-state lubricant because it exhibits low friction, low abrasion, and high wear resistance. Although we previously reported the reason why H-terminated DLC exhibits low friction based on a tight-binding quantum chemical molecular dynamics (TB-QCMD) simulation, experimentally, the low-friction state of H-terminated DLC is not stable, limiting its application. In the present work, our TB-QCMD simulations suggest that H/OH-terminated DLC could give low friction even under high loads, whereas H-terminated DLC could not. By using gas-phase friction experiments, we confirm that OH termination can indeed provide much more stable lubricity than H termination, validating the predictions from simulations. We conclude that H/OH-terminated DLC is a new low-friction material with high load capacity and high stable lubricity that may be suitable for practical use in industrial applications.

16.
J Chem Inf Model ; 60(12): 5891-5899, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33104339

RESUMO

We report on optimized molecular geometries and electronic properties calculated by the PM6 method for 94.0% of the 91.6 million molecules cataloged in PubChem Compounds retrieved on August 29, 2016. In addition to neutral states, we also calculated those for cationic, anionic, and spin flipped electronic states of 56.2%, 49.7%, and 41.3% of the molecules, respectively. Thus, the grand total of the PM6 calculations amounted to 221 million. We compared the resulting molecular geometries with B3LYP/6-31G* optimized geometries for 2.6 million molecules. The root-mean-square deviations in bond length and bond angle were approximately 0.016 Å and 1.7°, respectively. Then, using linear regression to examine the HOMO energy levels E(HOMO) in the B3LYP and PM6 calculations, we found that EB3LYP(HOMO) = 0.876EPM6(HOMO) + 1.975 (eV) and calculated the coefficient of determination to be 0.803. Likewise, we examined the LUMO energy levels and found EB3LYP(LUMO) = 1.069EPM6(LUMO) - 0.420 (eV); the coefficient of determination was 0.842. We also generated four subdata sets, each of which was composed of molecules with molecular weights less than 500. Subdata set i contained C, H, O and N, ii contained C, H, N, O, P, and S, iii contained C, H, N, O, P, S, F, and Cl, and iv contained C, H, N, O, P, S, F, Cl, Na, K, Mg, and Ca. The data sets are available at http://pubchemqc.riken.jp/pm6_datasets.html under a Creative Commons Attribution 4.0 International license.


Assuntos
Eletrônica
17.
Phys Chem Chem Phys ; 20(21): 14846-14854, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29781001

RESUMO

A bulk-heterojunction structure is often employed to develop high-performance organic photocells, in which the donor and acceptor regions are complexly intertwined. In such situations, mesoscopic-scale islands and peninsulas that compose the donor materials may be formed in the acceptor region. Alternatively, the donor region may extend deeply into the acceptor region. This yields mesoscopic-size impurities that can create obstacles in the charge separation (exciton dissociation) process of organic photocells and prevents the dissociation of excitons (electron-hole pairs). We previously reported on the effect of the cooperative behavior between the hot charge transfer (CT) state and the dimensional (entropy) effect on the charge separation process. In this paper, we discuss the mesoscopic-scale impurity effect on the charge separation process in PCBM acceptor models by considering the hot CT state and dimensional effects. In addition, we discuss atomic-scale effects such as molecular distortions and conformation changes using molecular dynamics (MD) simulations.

18.
Phys Chem Chem Phys ; 19(19): 12517-12526, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28470287

RESUMO

This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

19.
J Chem Inf Model ; 57(6): 1300-1308, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28481528

RESUMO

Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Elétrons , Teoria Quântica , Máquina de Vetores de Suporte
20.
J Chem Phys ; 146(8): 084109, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249442

RESUMO

An algorithm to solve the Huzinaga subsystem self-consistent field equations is proposed using two approximations: a local expansion of subsystem molecular orbitals and a truncation of the projection operator. Test calculations are performed on water and ammonia clusters, and n-alkane and poly-glycine. The errors were 2.2 and -0.6 kcal/mol for (H2O)40 and C40H82, respectively, at the Hartree-Fock level with the 6-31G basis set.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...