Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(6): 480-486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604883

RESUMO

Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Transdução de Sinais , Engenharia Tecidual , Diferenciação Celular/efeitos dos fármacos , Animais , Engenharia Tecidual/métodos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Linhagem Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química
2.
Biochem Biophys Res Commun ; 672: 177-184, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354611

RESUMO

Extracellular vesicles (EVs) released into the blood during exercise mediate its whole-body health effects. The differentiation of EVs released by skeletal muscle cells in vivo from those released by other cells is challenging, therefore, it is unclear whether exercise increases the number of EVs secreted by skeletal muscle cells. In this study, we investigated whether exercise affects the quantity of EVs released from skeletal muscle cells using in vitro exercise models. C2C12 myotubes were cultured on a gel layer with 1 or 30 Hz electrical pulse stimulation (EPS) to induce contractions as an artificial simulating exercise. We found that tetanic contraction induced by 30 Hz EPS increased the number of secreted EVs. MicroRNA (miRNA)-seq analysis revealed that 30 Hz EPS altered the miRNA in the secreted EVs. Furthermore, expression analysis of genes related to the biogenesis and transport of EVs revealed that the expression of ALG-2 interacting protein X (Alix) was increased in response to 30 Hz EPS, and the peak value of intracellular Ca2+ in myotubes at 30 Hz EPS was higher than that at 1 Hz, indicating that the increase in intracellular Ca2+ concentration may be related to the increased secretion of EVs in response to 30 Hz EPS.


Assuntos
Vesículas Extracelulares , MicroRNAs , Fibras Musculares Esqueléticas/metabolismo , Linhagem Celular , Células Cultivadas , Estimulação Elétrica , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular/fisiologia
3.
J Agric Food Chem ; 71(23): 8952-8958, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37255271

RESUMO

l-Anserine, an imidazole peptide, has a variety of physiological activities, but its effects on skeletal muscle differentiation and muscle contractile force remain unknown. Thus, in this study, we investigated the effect of l-anserine on muscle differentiation and muscle contractile force in human skeletal muscle cells. In two-dimensional culture, 1 µM l-anserine significantly increased the myotube diameters (26.5 ± 1.71, 27.7 ± 1.08, and 28.8 ± 0.85 µm with 0, 0.1, and 1 µM l-anserine, respectively) and the expression levels of genes involved in muscle differentiation and the sarcomere structure. In three-dimensional culture, 1 µM l-anserine significantly increased the contractile force of engineered human skeletal muscle tissues cultured on a microdevice (1.99 ± 0.30, 2.17 ± 0.62, 2.66 ± 0.39, and 3.28 ± 0.85 µN with 0, 0.1, 0.5, and 1 µM l-anserine, respectively). l-Anserine also increased the myotube diameters and the proportion of myotubes with sarcomere structures in the cultured tissues. Furthermore, the histamine receptor 1 (H1R) antagonist attenuated the l-anserine-induced increase in the contractile force, suggesting the involvement of H1R in the mechanism of action of l-anserine. This study showed for the first time that l-anserine enhances muscle differentiation and muscle contractility via H1R.


Assuntos
Anserina , Fibras Musculares Esqueléticas , Humanos , Anserina/análise , Anserina/farmacologia , Músculo Esquelético , Contração Muscular , Diferenciação Celular
4.
Sci Rep ; 13(1): 8146, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231024

RESUMO

Pathophysiological analysis and drug discovery targeting human diseases require disease models that suitably recapitulate patient pathology. Disease-specific human induced pluripotent stem cells (hiPSCs) differentiated into affected cell types can potentially recapitulate disease pathology more accurately than existing disease models. Such successful modeling of muscular diseases requires efficient differentiation of hiPSCs into skeletal muscles. hiPSCs transduced with doxycycline-inducible MYOD1 (MYOD1-hiPSCs) have been widely used; however, they require time- and labor-consuming clonal selection, and clonal variations must be overcome. Moreover, their functionality should be carefully examined. Here, we demonstrated that bulk MYOD1-hiPSCs established with puromycin selection rather than G418 selection showed rapid and highly efficient differentiation. Interestingly, bulk MYOD1-hiPSCs exhibited average differentiation properties of clonally established MYOD1-hiPSCs, suggesting that it is possible to minimize clonal variations. Moreover, disease-specific hiPSCs of spinal bulbar muscular atrophy (SBMA) could be efficiently differentiated via this method into skeletal muscle that showed disease phenotypes, suggesting the applicability of this method for disease analysis. Finally, three-dimensional muscle tissues were fabricated from bulk MYOD1-hiPSCs, which exhibited contractile force upon electrical stimulation, indicating their functionality. Thus, our bulk differentiation requires less time and labor than existing methods, efficiently generates contractible skeletal muscles, and may facilitate the generation of muscular disease models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Musculares , Humanos , Células Cultivadas , Diferenciação Celular/genética , Músculo Esquelético , Doenças Musculares/metabolismo
5.
Cells ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36497020

RESUMO

In vitro neuromuscular junction (NMJ) models are powerful tools for studying neuromuscular disorders. Although linearly patterned culture surfaces have been reported to be useful for the formation of in vitro NMJ models using mouse motor neuron (MNs) and skeletal muscle (SkM) myotubes, it is unclear how the linearly patterned culture surface increases acetylcholine receptor (AChR) clustering, one of the steps in the process of NMJ formation, and whether this increases the in vitro NMJ formation efficiency of co-cultured human MNs and SkM myotubes. In this study, we investigated the effects of a linearly patterned culture surface on AChR clustering in myotubes and examined the possible mechanism of the increase in AChR clustering using gene expression analysis, as well as the effects of the patterned surface on the efficiency of NMJ formation between co-cultured human SkM myotubes and human iPSC-derived MNs. Our results suggest that better differentiation of myotubes on the patterned surface, compared to the flat surface, induced gene expression of integrin α7 and AChR ε-subunit, thereby increasing AChR clustering. Furthermore, we found that the number of NMJs between human SkM cells and MNs increased upon co-culture on the linearly patterned surface, suggesting the usefulness of the patterned surface for creating in vitro human NMJ models.


Assuntos
Acetilcolina , Receptores Colinérgicos , Humanos , Camundongos , Animais , Receptores Colinérgicos/metabolismo , Técnicas de Cocultura , Acetilcolina/metabolismo , Junção Neuromuscular/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/metabolismo
6.
Biotechnol Rep (Amst) ; 36: e00766, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36245695

RESUMO

Three-dimensional cell spheroids are superior cell-administration form for cell-based therapy which generally exhibit superior functionality and long-term survival after transplantation. Here, we nondestructively measured the oxygen consumption rate of cell spheroids using an on-chip electrochemical device (OECD) and examined whether this rate can be used as a marker to estimate the quality of cell spheroids. Cell spheroids containing NanoLuc luciferase-expressing mouse mesenchymal stem cell line C3H10T1/2 (C3H10T1/2/Nluc) were prepared. Spheroids of high or low quality were prepared by altering the medium change frequency. After transplantation into mice, the high-quality C3H10T1/2/Nluc spheroids exhibited a higher survival rate than the low-quality ones. The oxygen consumption rate of the high-quality C3H10T1/2/Nluc spheroids was maintained at high levels, whereas that of the low-quality spheroids decreased with time. These results indicate that OECD-based measurement of the oxygen consumption rate can be used to estimate the quality of cell spheroids without destructive analysis of the spheroids.

7.
J Plant Res ; 135(5): 693-701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35834070

RESUMO

Plasmodesmata are unique channel structures in plants that link the fluid cytoplasm between adjacent cells. Plants have evolved these microchannels to allow trafficking of nutritious substances as well as regulatory factors for intercellular communication. However, tracking the behavior of plasmodesmata in real time is difficult because they are located inside tissues. Hence, a system was constructed to monitor the movement of substances by plasmodesmata using tobacco BY-2 cells, which are linearly organized cells, and a microfluidic device that traps them in place and facilitates observation. After targeting one cell for photobleaching, recovery of the lost H2B-GFP protein was detected within 200 min. No recovery was detected in that time frame by photobleaching the entire cell filaments. This suggested that the recovery of H2B-GFP protein was not due to de novo protein synthesis, but rather to translocation from neighboring cells. The transport of H2B-GFP protein was not observed when sodium chloride, a compound known to cause plasmodesmata closure, was present in the microfluid channel. Thus, using the microfluidic device and BY-2 cells, it was confirmed that the behavior of plasmodesmata could be observed in real time under controllable conditions.


Assuntos
Nicotiana , Plasmodesmos , Microfluídica , Permeabilidade , Plantas , Plasmodesmos/metabolismo , Nicotiana/metabolismo
8.
Biotechnol Bioeng ; 119(8): 2196-2205, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35478456

RESUMO

Skeletal muscle atrophy is characterized by decreases in protein content, myofiber diameter, and contractile force generation. As muscle atrophy worsens the quality of life, the development of anti-atrophic substances is desirable. In this study, we aimed to demonstrate a screening process for anti-atrophic peptides using photo-cleavable peptide array technology and human contractile atrophic muscle models. We developed a 96-well system and established a screening process with less variability. Dexamethasone-induced human atrophic tissue was constructed in the system. Eight peptides were selected from the literature and used for the screening of peptides for preventing the decrease of the contractile forces of tissues. The peptide QIGFIW, which showed preventive activity, was selected as the seed sequence. As a result of amino acid substitution, we obtained QIGFIQ as a peptide with higher anti-atrophic activity. These results indicate that the combinatorial use of the photo-cleavable peptide array technology and 96-well screening system could comprise a powerful approach to obtaining anti-atrophic peptides, and suggest that the 96-well screening system and atrophic model represent a practical and powerful tool for the development of drugs/functional food ingredients.


Assuntos
Atrofia Muscular , Qualidade de Vida , Humanos , Contração Muscular , Músculo Esquelético , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Peptídeos
9.
PLoS One ; 17(4): e0266982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421187

RESUMO

The tobacco BY-2 cell line has been used widely as a model system in plant cell biology. BY-2 cells are nearly transparent, which facilitates cell imaging using fluorescent markers. As cultured cells are drifted in the medium, therefore, it was difficult to observe them for a long period. Hence, we developed a microfluidic device that traps BY-2 cells and fixes their positions to allow monitoring the physiological activity of cells. The device contains 112 trap zones, with parallel slots connected in series at three levels in the flow channel. BY-2 cells were cultured for 7 days and filtered using a sieve and a cell strainer before use to isolate short cell filaments consisting of only a few cells. The isolated cells were introduced into the flow channel, resulting in entrapment of cell filaments at 25 out of 112 trap zones (22.3%). The cell numbers increased through cell division from 1 to 4 days after trapping with a peak of mitotic index on day 2. Recovery experiments of fluorescent proteins after photobleaching confirmed cell survival and permeability of plasmodesmata. Thus, this microfluidic device and one-dimensional plant cell samples allowed us to observe cell activity in real time under controllable conditions.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , Células Vegetais , Plasmodesmos , Nicotiana
10.
J Biosci Bioeng ; 133(2): 161-167, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34848124

RESUMO

Heat-treated porous silica gel (HT silica gel) previously developed by our group has selectively adsorbed cationic peptides at a pH of 7. Therefore, we focused on the use of antimicrobial peptides (AMPs) as bioactive peptides (BPs). First, 32 AMPs and 32 randomly designed peptides were generated using Fmoc solid synthesis, and their adsorption ratio to HT-silica gel was investigated. Thirty two AMPs showed a relatively higher adsorption ratio of 58.8% compared to that of randomly designed peptides, which was 35.3%. Desorption conditions were investigated using Amyl-1-18 antimicrobial peptides. Next, pepsin hydrolysate from rice endosperm protein (REP) powder was prepared by ourselves. The REP hydrolysate containing dry matter (7.5 mg) was applied to the adsorption/desorption (AD) procedure using HT silica gel to obtain 1.6 mg of AD hydrolysate. When the two hydrolysates were subjected to mass spectrometry, 305 concentrated peptides were obtained. In total, 26 peptides with high content and high enrichment ratios were listed and synthesized. When the antimicrobial activity of these 26 peptides was evaluated using Cutibacterium acnes, five peptides consisting of 12-27 amino acids were identified as novel AMPs. Two of these peptides, which were derived from rice glutelin, showed antimicrobial activity against all four microbes, including Porphyromonas gingivalis, Escherichia coli, and Streptococcus mutans. In the present study, we showed that AMPs could be easily enriched from protein hydrolysate using HT silica gel. The adsorption/desorption procedure using HT silica gel was confirmed to be a useful tool for convenient BP separation.


Assuntos
Peptídeos Antimicrobianos , Temperatura Alta , Adsorção , Porosidade , Sílica Gel
11.
Biotechnol J ; 17(1): e2100137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34581003

RESUMO

BACKGROUND: Because of the excellent therapeutic potential, mesenchymal stem cells (MSCs) have been used as cell therapeutics for various diseases. However, the survival rate and duration of MSCs after transplantation are extremely low and short, respectively. To solve these problems, in this study, we prepared multicellular spheroids of MSCs and investigated their survival and function after intravenous injection in mice. METHODS AND RESULTS: The murine adipose-derived MSC line m17.ASC was cultured in agarose-based microwell plates to obtain size-controlled m17.ASC spheroids of an average diameter and cell number of approximately 170 µm and 1100 cells/spheroid, respectively. The intravenously injected m17.ASC spheroids mainly accumulated in the lung and showed a higher survival rate than suspended m17.ASC cells during the experimental period of 7 days. m17.ASC spheroids efficiently reduced the lipopolysaccharide-induced increase in plasma concentrations of interleukin-6 and tumor necrosis factor-α. CONCLUSIONS: These results indicate that spheroid formation improved the pulmonary delivery and survival of MSCs, as well as their therapeutic potential against inflammatory pulmonary diseases.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tecido Adiposo , Animais , Injeções Intravenosas , Pulmão , Camundongos , Esferoides Celulares
12.
ACS Omega ; 6(46): 31244-31252, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841168

RESUMO

We established a method for synthesizing a free cyclic peptide library via peptide array synthesis to demonstrate the sequence activity of cyclic peptides. Variants of the cyclic nonapeptide oxytocin (OXT) were synthesized via residue substitution. Natural amino acids (AAs) were classified into eight groups based on their physical properties and the size of their side chains, and a representative AA from each group was selected for residue substitution. All OXT variants were systematically evaluated for agonist/antagonist activity. Consequently, no improvement in agonist activity was observed, although substitution of the P4 and P8 residues resulted in decreased activity due to AA substitution. A few OXT variants exhibited antagonistic activity. In particular, the variants with P2 Leu residue substitution (Y2L) and Phe substitutions at residues 4 (Q4F), 5 (N5F), and 7 (P7F) showed high antagonistic activity. Variant Y2W was found to have the highest inhibitory effect, with a dissociation constant of 44 nM, which was comparable to that of the commercial antagonist atosiban (21 nM). Therefore, a free cyclic peptide library constructed via substitution with a natural AA residue was confirmed to be a powerful tool for bioactive peptide screening.

13.
Foods ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681544

RESUMO

Recently, many bioactive peptides have been identified using bioinformatics tools. Previously, our group developed a method to screen dual-functional peptides that have direct intestinal delivery with porous silica gel and bile acid micelle disruption. However, newly designed peptides were not found in any storage protein. Therefore, in this study, in silico screening was performed using a 350,000 edible peptide library consisting of 4- to 7-mer independent peptides. As an initial screening, all edible peptides were applied to the random forest model to select predicted positive peptides. For a second screening, the peptides were assessed for the possibility of intestinal delivery using a 3D color map. From this approach, three novel dual-functional peptides, VYVFDE, WEFIDF, and VEEFYC were identified, and all of them were derived from storage proteins (legumin, myosin, and 11S globulin). In particular, VEEFYCS, in which a serine residue (S) is added to VEEFYC, was assumed to be released by thermolysin from the 11S-globulin derived from Ginkgo biloba by LC-MS/MS analysis. VEEFYCS was found to have suitable direct intestinal delivery and bile acid micelle disruption activity.

14.
Biol Pharm Bull ; 44(10): 1458-1464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602554

RESUMO

Multicellular spheroids are expected to be used for in vivo-like tissue models and cell transplantation. Microwell devices are useful for the fabrication of multicellular spheroids to improve productivity and regulate their size. However, the high cell density in microwell devices leads to accelerated cell death. In this study, we developed O2-generating microwells by incorporating calcium peroxide (CaO2) into polydimethylsiloxane (PDMS)-based microwells. The CaO2-containing PDMS was shown to generate O2 for 3 d. Then, CaO2-containing PDMS was used to fabricate O2-generating microwells using a micro-molding technique. When human hepatocellular carcinoma (HepG2) spheroids were prepared using the conventional microwells, the O2 concentration in the culture medium reduced to approx. 67% of the cell-free level. In contrast, the O2-generating microwells maintained O2 at constant levels. The HepG2 spheroids prepared using the O2-generating microwells had a larger number of live cells than those prepared using the conventional microwells. In addition, the O2-generating microwells rescued hypoxia in the HepG2 spheroids and increased cell viability. Lastly, the O2-generating microwells were also useful for the preparation of multicellular spheroids of other cell types (i.e., MIN6, B16-BL6, and adipose-derived stem cells) with high cell viability. These results showed that the O2-generating microwells are useful for preparing multicellular spheroids with high cell viability.


Assuntos
Técnicas de Cultura de Células/instrumentação , Peróxidos/farmacologia , Esferoides Celulares/fisiologia , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Dimetilpolisiloxanos/química , Humanos , Oxigênio/metabolismo , Peróxidos/química
15.
J Biosci Bioeng ; 132(4): 417-422, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34348874

RESUMO

Electric pulse-stimulated C2C12 myotubes are gaining interest in the field of muscle physiology and biotechnology because electric pulse stimulation (EPS) enhances sarcomere structure development and active tension generation capability. Recently, we found that termination of EPS results in the rapid loss of active tension generation accompanied by disassembly of the sarcomere structure, which may represent an in vitro muscle atrophy model. To elucidate the molecular mechanism underlying this rapid loss of active tension generation and sarcomere structure disassembly after termination of EPS, we performed transcriptomic analysis using microarray. After termination of EPS, 74 genes were upregulated and 120 genes were downregulated after 30 min; however, atrophy-related genes were not found among these genes. To further assess the effect of EPS on gene expression, we re-applied EPS after its termination for 8 h and searched for genes whose expression was reversed. Four genes were upregulated by termination of EPS and downregulated by the re-application of EPS, whereas two genes were downregulated by termination of EPS and upregulated by the re-application of EPS. Although none of these genes were atrophy- or hypertrophy-related, the results presented in this study will contribute to the understanding of gene expression changes that mediate rapid loss of active tension generation and sarcomere structure disassembly following termination of EPS in C2C12 myotubes.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Estimulação Elétrica , Expressão Gênica
16.
Sci Rep ; 11(1): 16123, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373503

RESUMO

Bioactive peptides (BPs) are protein fragments that exhibit a wide variety of physicochemical properties, such as basic, acidic, hydrophobic, and hydrophilic properties; thus, they have the potential to interact with a variety of biomolecules, whereas neither carbohydrates nor fatty acids have such diverse properties. Therefore, BP is considered to be a new generation of biologically active regulators. Recently, some BPs that have shown positive benefits in humans have been screened from edible proteins. In the present study, a new BP screening method was developed using BIOPEP-UWM and machine learning. Training data were initially obtained using high-throughput techniques, and positive and negative datasets were generated. The predictive model was generated by calculating the explanatory variables of the peptides. To understand both site-specific and global characteristics, amino acid features (for site-specific characteristics) and peptide global features (for global characteristics) were generated. The constructed models were applied to the peptide database generated using BIOPEP-UWM, and bioactivity was predicted to explore candidate bile acid-binding peptides. Using this strategy, seven novel bile acid-binding peptides (VFWM, QRIFW, RVWVQ, LIRYTK, NGDEPL, PTFTRKL, and KISQRYQ) were identified. Our novel screening method can be easily applied to industrial applications using whole edible proteins. The proposed approach would be useful for identifying bile acid-binding peptides, as well as other BPs, as long as a large amount of training data can be obtained.


Assuntos
Ácidos e Sais Biliares/química , Peptídeos/química , Proteínas/química , Bases de Dados Factuais , Alimentos , Aprendizado de Máquina
17.
Biotechnol Lett ; 43(9): 1905-1911, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34228234

RESUMO

OBJECTIVES: To develop a simple pectin-degrading microorganism screening method. RESULTS: We developed a method utilizing the phenomenon whereby cooling an alkaline agar medium containing pectin causes the agar to become cloudy. This highly simplified method involves culturing the microorganisms on pectin-containing agar medium until colony formation is observed, and subsequent overnight cooling of the agar medium to 4 °C. Using this simple procedure, we successfully identified pectin-degrading microorganisms by observing colonies with halos on the clouded agar medium. We used alkaline pectinase and Bacillus halodurans, which is known to secrete alkaline pectinase, to establish the screening method. We demonstrated the screening of pectin-degrading microorganisms using the developed method and successfully isolated pectin-degrading microorganisms (Paenibacillus sp., Bacillus clausii, and Bacillus halodurans) from a soil sample. CONCLUSIONS: The developed method is useful for identifying pectin-degrading microorganisms.


Assuntos
Ágar/química , Bactérias/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Pectinas/química , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus clausii/enzimologia , Bacillus clausii/crescimento & desenvolvimento , Bacillus clausii/isolamento & purificação , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Temperatura Baixa , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Proteólise , Microbiologia do Solo
18.
Lab Chip ; 21(10): 1897-1907, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008665

RESUMO

Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. Human iPSC (hiPSC)-derived MN spheroids in one chamber elongated their axons into microtunnels, which reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.


Assuntos
Dispositivos Lab-On-A-Chip , Neurônios Motores , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético , Junção Neuromuscular
19.
Biochem Biophys Res Commun ; 550: 177-183, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33706101

RESUMO

Free fatty acid receptor 1 (FFAR1 or GPR40) has attracted attention for the treatment of type 2 diabetes mellitus, and various small-molecule agonists have been developed. However, most FFAR1 agonists as well as endogenous ligands, such as linoleic acids, have high lipophilicity, and their high lipophilicity is related to off-target toxicity. Therefore, we need to focus on new ligand candidates with less toxicity. In this study, we screened peptides with FFAR1 agonist activity as new ligand candidates. First, we used phage display to identify peptides with high affinity to FFAR1. Next, the agonist activities of peptides determined by the phage display were evaluated by the TGF-α shedding assay. Finally, to improve the FFAR1 agonist activity of the peptide, we performed an inclusive single amino acid substitution and sequence analysis. Logistic regression (LR) analysis using 120 physiochemical properties was performed to predict peptides with high FFAR1 agonist activity. STTGTQY determined by phage display promoted glucose-stimulated insulin secretion in pancreatic MIN6 cells. Furthermore, STKGTF predicted by the LR analysis showed high insulin secretion at low concentrations compared to STTGTQY. The results of this study suggest that peptides could be new candidates as FFAR1 agonists.


Assuntos
Substituição de Aminoácidos , Avaliação Pré-Clínica de Medicamentos/métodos , Aprendizado de Máquina , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Sequência de Aminoácidos , Linhagem Celular , Clonagem Molecular , Glucose/farmacologia , Células HEK293 , Humanos , Insulina/metabolismo , Peptídeos/efeitos adversos , Peptídeos/genética , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Análise de Regressão , Fator de Crescimento Transformador alfa/metabolismo
20.
J Biosci Bioeng ; 131(4): 434-441, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33358352

RESUMO

The contractile function of skeletal muscle is essential for maintaining the vital activity of life. Muscular diseases such as muscular dystrophy severely compromise the quality of life of patients and ultimately lead to death. There is therefore an urgent need to develop therapeutic agents for these diseases. In a previous study, we showed that three-dimensional skeletal muscle tissues fabricated using the magnetic force-based tissue engineering technique exhibited contractile activity, and that drug effects could be evaluated based on the contractile activity of the skeletal muscle tissues. However, the reported method requires a large number of cells and the tissue preparation procedure is complex. It is therefore necessary to improve the tissue preparation method. In this study, a miniature device made of polydimethylsiloxane was used to simplify the production of contracting skeletal muscle tissues applicable to high-throughput screening. The effects of model drugs on the contractile force generation of skeletal muscle tissues prepared from mouse C2C12 myoblast and human induced pluripotent stem cells were evaluated using the miniature muscle device. The results indicated that the muscle device system could provide a useful tool for drug screening.


Assuntos
Contração Muscular , Músculo Esquelético/citologia , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mioblastos/citologia , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...