Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 6890-6906, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823935

RESUMO

We perform a beat-frequency-resolved analysis for two-dimensional electronic spectroscopy using a high-speed and stable 2D electronic spectrometer and few-cycle visible laser pulses to disentangle the vibrational coherences in an artificial fluorescent protein. We develop a highly stable ultrashort light source that generates 5.3-fs visible pulses with a pulse energy of 4.7 µJ at a repetition rate of 10 kHz using multi-plate pulse compression and laser filamentation in a gas cell. The above-5.3-fs laser pulses together with a high-speed multichannel detector enable us to measure a series of 2D electronic spectra, which are resolved in terms of beat frequency related to vibrational coherence. We successfully extract the discrete vibrational peaks behind the inhomogeneous broadening in the absorption spectra and the vibrational quantum beats of the excited electronic state behind the strong incoherent population background in the typical 2D electronic spectra.

2.
Protein Sci ; 31(6): e4313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35634769

RESUMO

Pigeon iron-sulfur (Fe-S) cluster assembly 1 homolog (clISCA1) is a target protein for research into the biomagnetoreception mechanism, as the clCRY4/clISCA1 oligomer, a complex composed of the columnar clISCA1 oligomer and the magnetosensor candidate protein cryptochrome-4 (clCRY4) oligomer, tends to orient itself along weak magnetic fields, such as geomagnetic fields, under blue light. To obtain insight into the magnetic orientation mechanism of the clCRY4/clISCA1 oligomer, we inspected magnetic field effects on the structure and molecular behavior of clISCA1 by small angle X-ray scattering analysis. The results indicated that the clISCA1 protomer took the Fe-S cluster-bound globular form and unbound rod-like form. The globular clISCA1 protomer assembled to form columnar oligomers, which allowed for the binding of many Fe-S clusters at the interface between clISCA1 protomers. Moreover, the translational diffusion and the columnar oligomerization of clISCA1 were controlled by the external static magnetic field and Fe-S clusters bound to clISCA1. However, the columnar clISCA1 oligomer was not oriented along the external static magnetic field (~1 T) when clCRY4 was not bound to clISCA1. This result indicated that clCRY4 has a function to enhance the magnetic orientational property of clCRY4/clISCA1 oligomer.


Assuntos
Proteínas Ferro-Enxofre , Animais , Columbidae/metabolismo , Proteínas Ferro-Enxofre/genética , Campos Magnéticos , Subunidades Proteicas/metabolismo , Enxofre
3.
Acta Crystallogr D Struct Biol ; 76(Pt 1): 73-84, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31909745

RESUMO

Thioredoxin (TRX) is an important antioxidant against oxidative stress. TRX from the extremely halophilic archaeon Halobacterium salinarum NRC-1 (HsTRX-A), which has the highest acidic residue content [(Asp + Glu)/(Arg + Lys + His) = 9.0] among known TRXs, was chosen to elucidate the catalytic mechanism and evolutionary characteristics associated with haloadaptation. X-ray crystallographic analysis revealed that the main-chain structure of HsTRX-A is similar to those of homologous TRXs; for example, the root-mean-square deviations on Cα atoms were <2.3 Šfor extant archaeal TRXs and <1.5 Šfor resurrected Precambrian TRXs. A unique water network was located near the active-site residues (Cys45 and Cys48) in HsTRX-A, which may enhance the proton transfer required for the reduction of substrates under a high-salt environment. The high density of negative charges on the molecular surface (3.6 × 10-3 e Å-2) should improve the solubility and haloadaptivity. Moreover, circular-dichroism measurements and enzymatic assays using a mutant HsTRX-A with deletion of the long flexible N-terminal region (Ala2-Pro17) revealed that Ala2-Pro17 improves the structural stability and the enzymatic activity of HsTRX-A under high-salt environments (>2 M NaCl). The elongation of the N-terminal region in HsTRX-A accompanies the increased hydrophilicity and acidic residue content but does not affect the structure of the active site. These observations offer insights into molecular evolution for haloadaptation and potential applications in halophilic protein-related biotechnology.


Assuntos
Halobacterium salinarum/metabolismo , Tiorredoxinas/química , Evolução Molecular , Conformação Proteica , Tolerância ao Sal , Cloreto de Sódio/metabolismo
4.
J Phys Chem Lett ; 11(2): 492-496, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31880458

RESUMO

Neutron crystallography has been used to elucidate the protonation states for the enhanced green fluorescent protein, which has revolutionized imaging technologies. The structure has a deprotonated hydroxyl group in the fluorescent chromophore. Also, the protonation states of His148 and Thr203, as well as the orientation of a critical water molecule in direct contact with the chromophore, could be determined. The results demonstrate that the deprotonated hydroxyl group in the chromophore and the nitrogen atom ND1 in His148 are charged negatively and positively, respectively, forming an ion pair. The position of the two deuterium atoms in the critical water molecule appears to be displaced slightly toward the acceptor oxygen atoms according to their omit maps. This displacement implies the formation of an intriguing electrostatic potential realized inside of the protein. Our findings provide new insights into future protein design strategies along with developments in quantum chemical calculations.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas Mutantes/química , Prótons , Cristalografia por Raios X , Modelos Moleculares , Proteínas Mutantes/genética , Mutação , Eletricidade Estática
5.
J Phys Chem B ; 123(15): 3189-3198, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30905155

RESUMO

The interior of living cells is a molecular-crowding environment, where large quantities of various molecules coexist. Investigations into the nature of this environment are essential for an understanding of both the elaborate biological reactions and the maintenance of homeostasis occurring therein. The equilibrium states of biological macromolecular systems are affected by molecular-crowding environments unmatched by in vitro diluted environments; knowledge about crowding effects is still insufficient due to lack of relevant experimental studies. Recent developments in the techniques of in-cell NMR and large-scale molecular dynamics simulation have provided new insights into the structure and dynamics of biological molecules inside the cells. This study focused on a new experimental technique to directly observe the structure of a specific protein or membrane in condensed crowder solutions using neutron scattering. Deuterated whole-cell debris was used to reproduce an environment that more closely mimics the interior of living cells than models used previously. By the reduction of the background scattering from large amounts of cell debris, we successfully extracted structure information for both small globular protein and small unilamellar vesicle (SUV) from the concentrated cell-debris solution up to a weight ratio of 1:60 for protein/crowder and 1:40 for SUV/crowder.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Difração de Nêutrons
6.
Amino Acids ; 51(2): 331-343, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30377839

RESUMO

We expressed a histidine racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 (Lm-HisR) successively in a soluble fraction of Escherichia coli BL21 (DE3) and then highly purified it from the cell-free extract. Lm-HisR showed amino acid racemase activity on histidine specifically. This is the first example of an amino acid racemase specifically acting on histidine. Phylogenetic analysis of Lm-HisR showed that Lm-HisR was located far from the cluster of alanine racemases reported thus far and only in lactic acid bacteria of the genus Leuconostoc. Alignment of the primary structure of Lm-HisR with those of lysine and alanine racemases and alanine racemase homologs previously reported revealed that the PLP-binding lysine and catalytic tyrosine were completely conserved, and some residues that are unique to the phylogenetic branch of Lm-HisR, Phe44, Ser45, Thr174, Thr206, His286, Ser287, Phe292, Gly312, Val357, and Ala358 were identified. We determined the crystal structure of Lm-HisR complexed with PLP at a 2.1-Å resolution. The crystal structure contained four molecules (two dimers) in the asymmetric unit. When comparing the 3D structure of Lm-HisR with those of racemases from Geobacillus stearothermophilus and Oenococcus oeni, Met315 was completely conserved, but Val357 was not. In addition, two significant differences were observed between Lm-HisR and G. stearothermophilus alanine racemase. Phe44 and His286 in Lm-HisR corresponded to Tyr43 and Tyr284 in G. stearothermophilus alanine racemase, respectively. Based on the structural analysis, comparison with alanine racemase, and docking simulation, three significant residues, Phe44, His286, and Val357, were identified that may control the substrate specificity of Lm-HisR.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/isolamento & purificação , Histidina/química , Leuconostoc mesenteroides/enzimologia , Alanina Racemase/química , Isomerases de Aminoácido/genética , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Acoplamento Molecular , Filogenia , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química
7.
FASEB J ; 33(3): 3647-3658, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30481062

RESUMO

Pleiotropic protein promoting DNA repair A (PprA) is a key protein facilitating the extreme radiation resistance of Deinococcus radiodurans. PprA is a unique protein to the genus Deinococcus and exists as an oligomer ranging from a tetramer to an ∼100-mer depending on protein concentrations. Here, the X-ray crystal structure of PprA was determined to clarify how PprA confers radiation resistance. The tertiary structure of dimeric PprA was elucidated by using mutants obtained with random and site-directed mutagenesis methods (W183R and A139R); these mutants have disabled DNA binding and polymerization functions. Because the mutant A139R and W183R proteins have dimeric assemblies with 2 different interfaces (Interfaces 1 and 2), the linear and oligomerized PprA model was constructed as a left-handed face-to-face periodic screw structure. In addition, the linear structure in solution was confirmed by small-angle scattering experiments. The site-directed mutational analysis identified essential basic amino acids for DNA binding. These analytical data support the hypothesis that a complex assembly of PprA molecules, which are extended and have a screw structure, surrounds and stretches the DNA strand, acting as a novel guide to colocalize the DNA strands for efficient DNA repairs.-Adachi, M., Shimizu, R., Shibazaki, C., Satoh, K., Fujiwara, S., Arai, S., Narumi, I., Kuroki, R. Extended structure of pleiotropic DNA repair-promoting protein PprA from Deinococcus radiodurans.


Assuntos
Proteínas de Bactérias/genética , Reparo do DNA/genética , Deinococcus/genética , Aminoácidos/genética , DNA/genética , Tolerância a Radiação/genética
8.
J Mol Biol ; 430(24): 5094-5104, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30359582

RESUMO

Casein kinase 2 (CK2) has broad phosphorylation activity against various regulatory proteins, which are important survival factors in eukaryotic cells. To clarify the hydration structure and catalytic mechanism of CK2, we determined the crystal structure of the alpha subunit of human CK2 containing hydrogen and deuterium atoms using joint neutron (1.9 Šresolution) and X-ray (1.1 Šresolution) crystallography. The analysis revealed the structure of conserved water molecules at the active site and a long potential hydrogen bonding network originating from the catalytic Asp156 that is well known to enhance the nucleophilicity of the substrate OH group to the γ-phospho group of ATP by proton elimination. His148 and Asp214 conserved in the protein kinase family are located in the middle of the network. The water molecule forming a hydrogen bond with Asp214 appears to be deformed. In addition, mutational analysis of His148 in CK2 showed significant reductions by 40%-75% in the catalytic efficiency with similar affinity for ATP. Likewise, remarkable reductions to less than 5% were shown by corresponding mutations on His131 in death-associated protein kinase 1, which belongs to a group different from that of CK2. These findings shed new light on the catalytic mechanism of protein kinases in which the hydrogen bond network through the C-terminal domain may assist the general base catalyst to extract a proton with a link to the bulk solvent via intermediates of a pair of residues.


Assuntos
Mutação , Água/química , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/genética , Domínio Catalítico , Cristalografia por Raios X , Deutério , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Domínios Proteicos
9.
Proc Natl Acad Sci U S A ; 115(21): 5456-5461, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735675

RESUMO

Polypentagonal water networks were recently observed in a protein capable of binding to ice crystals, or ice-binding protein (IBP). To examine such water networks and clarify their role in ice-binding, we determined X-ray crystal structures of a 65-residue defective isoform of a Zoarcidae-derived IBP (wild type, WT) and its five single mutants (A20L, A20G, A20T, A20V, and A20I). Polypentagonal water networks composed of ∼50 semiclathrate waters were observed solely on the strongest A20I mutant, which appeared to include a tetrahedral water cluster exhibiting a perfect position match to the [Formula: see text] first prism plane of a single ice crystal. Inclusion of another symmetrical water cluster in the polypentagonal network showed a perfect complementarity to the waters constructing the [Formula: see text] pyramidal ice plane. The order of ice-binding strength was A20L < A20G < WT < A20T < A20V < A20I, where the top three mutants capable of binding to the first prism and the pyramidal ice planes commonly contained a bifurcated γ-CH3 group. These results suggest that a fine-tuning of the surface of Zoarcidae-derived IBP assisted by a side-chain group regulates the holding property of its polypentagonal water network, the function of which is to freeze the host protein to specific ice planes.


Assuntos
Proteínas Anticongelantes/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Peixes/metabolismo , Congelamento , Gelo/análise , Água/química , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Sítios de Ligação , Fenômenos Biofísicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cristalografia por Raios X , Proteínas de Peixes/química , Proteínas de Peixes/genética , Peixes/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Água/metabolismo
10.
Protein Sci ; 26(10): 1953-1963, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707339

RESUMO

T4 phage lysozyme is an inverting glycoside hydrolase that degrades the murein of bacterial cell walls by cleaving the ß-1,4-glycosidic bond. The substitution of the catalytic Thr26 residue to a histidine converts the wild type from an inverting to a retaining enzyme, which implies that the original general acid Glu11 can also act as an acid/base catalyst in the hydrolysis. Here, we have determined the neutron structure of the perdeuterated T26H mutant to clarify the protonation states of Glu11 and the substituted His26, which are key in the retaining reaction. The 2.09-Å resolution structure shows that the imidazole group of His26 is in its singly protonated form in the active site, suggesting that the deprotonated Nɛ2 atom of His26 can attack the anomeric carbon of bound substrate as a nucleophile. The carboxyl group of Glu11 is partially protonated and interacts with the unusual neutral state of the guanidine moiety of Arg145, as well as two heavy water molecules. Considering that one of the water-binding sites has the potential to be occupied by a hydronium ion, the bulk solvent could be the source for the protonation of Glu11. The respective protonation states of Glu11 and His26 are consistent with the bond lengths determined by an unrestrained refinement of the high-resolution X-ray structure of T26H at 1.04-Å resolution. The detail structural information, including the coordinates of the deuterium atoms in the active site, provides insight into the distinctively different catalytic activities of the mutant and wild type enzymes.


Assuntos
Bacteriófago T4/enzimologia , Muramidase/metabolismo , Muramidase/ultraestrutura , Bacteriófago T4/genética , Sítios de Ligação/genética , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Muramidase/química , Muramidase/genética , Mutação/genética , Nêutrons , Conformação Proteica
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 541-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25760604

RESUMO

Environmentally friendly absorbents are needed for Sr(2+) and Cs(+), as the removal of the radioactive Sr(2+) and Cs(+) that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs(+) or Sr(2+). The crystal structure of a halophilic ß-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Šin space group P31 using X-ray crystallography. Moreover, the locations of bound Sr(2+) and Cs(+) ions were identified by anomalous X-ray diffraction. The location of one Cs(+)-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na(+) (90 mM Na(+)/10 mM Cs(+)). From an activity assay using isothermal titration calorimetry, the bound Sr(2+) and Cs(+) ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs(+)-binding site provides important information that is useful for the design of artificial Cs(+)-binding sites that may be useful in the bioremediation of radioactive isotopes.


Assuntos
Césio/química , Chromohalobacter/enzimologia , beta-Lactamases/química , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , Estrôncio/química
12.
Protein Sci ; 23(10): 1349-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044036

RESUMO

Pleiotropic protein promoting DNA repair A (PprA) is a key protein that facilitates the extreme radioresistance of Deinococcus radiodurans. To clarify the role of PprA in the radioresistance mechanism, the interaction between recombinant PprA expressed in Escherichia coli with several double-stranded DNAs (i.e., super coiled, linear, or nicked circular dsDNA) was investigated. In a gel-shift assay, the band shift of supercoiled pUC19 DNA caused by the binding of PprA showed a bimodal distribution, which was promoted by the addition of 1 mM Mg, Ca, or Sr ions. The dissociation constant of the PprA-supercoiled pUC19 DNA complex, calculated from the relative portions of shifted bands, was 0.6 µM with Hill coefficient of 3.3 in the presence of 1 mM Mg acetate. This indicates that at least 281 PprA molecules are required to saturate a supercoiled pUC19 DNA, which is consistent with the number (280) of bound PprA molecules estimated by the UV absorption of the PprA-pUC19 complex purified by gel filtration. This saturation also suggests linear polymerization of PprA along the dsDNA. On the other hand, the bands of linear dsDNA and nicked circular dsDNA that eventually formed PprA complexes did not saturate, but created larger molecular complexes when the PprA concentration was >1.3 µM. This result implies that DNA-bound PprA aids association of the termini of damaged DNAs, which is regulated by the concentration of PprA. These findings are important for the understanding of the mechanism underlying effective DNA repair involving PprA.


Assuntos
Proteínas de Bactérias/genética , DNA Bacteriano/genética , Deinococcus/metabolismo , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Super-Helicoidal , Deinococcus/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Tolerância a Radiação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais
13.
J Synchrotron Radiat ; 20(Pt 6): 953-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121347

RESUMO

Symfoil-4P is a de novo protein exhibiting the threefold symmetrical ß-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine-glycine sequences of Symfoil-4P are replaced with glutamine-glycine (Symfoil-QG) or serine-glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of Symfoil-II such as molecular stability.


Assuntos
Proteínas/química , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Cromatografia em Gel , Cristalização , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas/genética , Proteínas/isolamento & purificação , Homologia de Sequência de Aminoácidos
14.
Blood ; 116(3): 406-17, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20351311

RESUMO

Bortezomib is now widely used for the treatment of multiple myeloma (MM); however, its action mechanisms are not fully understood. Despite the initial results, recent investigations have indicated that bortezomib does not inactivate nuclear factor-kappaB activity in MM cells, suggesting the presence of other critical pathways leading to cytotoxicity. In this study, we show that histone deacetylases (HDACs) are critical targets of bortezomib, which specifically down-regulated the expression of class I HDACs (HDAC1, HDAC2, and HDAC3) in MM cell lines and primary MM cells at the transcriptional level, accompanied by reciprocal histone hyperacetylation. Transcriptional repression of HDACs was mediated by caspase-8-dependent degradation of Sp1 protein, the most potent transactivator of class I HDAC genes. Short-interfering RNA-mediated knockdown of HDAC1 enhanced bortezomib-induced apoptosis and histone hyperacetylation, whereas HDAC1 overexpression inhibited them. HDAC1 overexpression conferred resistance to bortezomib in MM cells, and administration of the HDAC inhibitor romidepsin restored sensitivity to bortezomib in HDAC1-overexpressing cells both in vitro and in vivo. These results suggest that bortezomib targets HDACs via distinct mechanisms from conventional HDAC inhibitors. Our findings provide a novel molecular basis and rationale for the use of bortezomib in MM treatment.


Assuntos
Ácidos Borônicos/uso terapêutico , Histona Desacetilases/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Pirazinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ácidos Borônicos/administração & dosagem , Bortezomib , Caspase 8/metabolismo , Linhagem Celular Tumoral , Depsipeptídeos/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Histona Desacetilase 1/genética , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/classificação , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Pirazinas/administração & dosagem , RNA Interferente Pequeno/genética , Fator de Transcrição Sp1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Biol Chem ; 284(44): 30673-83, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19736310

RESUMO

Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and erythroid precursors but down-regulated in mature myeloid cells especially granulocytes. In contrast, acute myeloid leukemias showed HDAC overexpression and histone hypoacetylation. Transcription of the HDAC1 gene was repressed by CCAAT/enhancer binding proteins during myeloid differentiation, and activated by GATA-1 during erythro-megakaryocytic differentiation. Small interfering RNA-mediated knockdown of HDAC1 enhanced myeloid differentiation in immature hematopoietic cell lines and perturbed erythroid differentiation in progenitor cells. Myeloid but not erythro-megakaryocytic differentiation was blocked in mice transplanted with HDAC1-overexpressing hematopoietic progenitor cells. These findings suggest that HDAC is not merely an auxiliary factor of genetic elements but plays a direct role in the cell fate decision of hematopoietic progenitors.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Histona Desacetilase 1/genética , Células da Medula Óssea/citologia , Fator de Ligação a CCAAT/fisiologia , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Fator de Transcrição GATA1/fisiologia , Histona Desacetilase 1/análise , Histona Desacetilase 1/fisiologia , Histona Desacetilases/análise , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Humanos , Leucemia Mieloide , Células Mieloides , Transcrição Gênica
16.
Stem Cells ; 25(10): 2439-47, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17600109

RESUMO

E2F-6 is a dominant-negative transcriptional repressor against other members of the E2F family. In this study, we investigated the expression and function of E2F-6 in human hematopoietic progenitor cells to clarify its role in hematopoiesis. We found that among E2F subunits, E2F-1, E2F-2, E2F-4, and E2F-6 were expressed in CD34(+) human hematopoietic progenitor cells. The expression of E2F-6 increased along with proliferation and decreased during differentiation of hematopoietic progenitors, whereas the other three species were upregulated in CD34(-) bone marrow mononuclear cells. Overexpression of E2F-6 did not affect the growth of immature hematopoietic cell line K562 but suppressed E2F-1-induced apoptosis, whereas it failed to inhibit apoptosis induced by differentiation inducers and anticancer drugs. Among E2F-1-dependent apoptosis-related molecules, E2F-6 specifically inhibited upregulation of Apaf-1 by competing with E2F-1 for promoter binding. E2F-6 similarly suppressed apoptosis and Apaf-1 upregulation in primary hematopoietic progenitor cells during cytokine-induced proliferation but had no effect when they were differentiated. As a result, E2F-6 enhanced the clonogenic growth of colony-forming unit-granulocyte, erythroid, macrophage, and megakaryocyte. These results suggest that E2F-6 provides a failsafe mechanism against loss of hematopoietic progenitor cells during proliferation. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Transcrição E2F6/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Fator Apoptótico 1 Ativador de Proteases/biossíntese , Fator Apoptótico 1 Ativador de Proteases/genética , Ligação Competitiva , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Meios de Cultura Livres de Soro/farmacologia , Citocinas/farmacologia , Fatores de Transcrição E2F/biossíntese , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/farmacologia , Células-Tronco Hematopoéticas/citologia , Humanos , Células K562/citologia , Células K562/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Recombinantes de Fusão/fisiologia , Transdução Genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...