Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Autism ; 4(1): 6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23531457

RESUMO

BACKGROUND: Accumulating evidence suggests that dysfunction in the glutamatergic system may underlie the pathophysiology of autism. The anterior cingulate cortex (ACC) has been implicated in autism as well as in glutamatergic neurotransmission. We hypothesized that alterations in the glutamate-glutamine cycle in the ACC might play a role in the pathophysiology of autism. METHODS: We performed Western blot analyses for the protein expression levels of enzymes in the glutamate-glutamine cycle, including glutamine synthetase, kidney-type glutaminase, liver-type glutaminase, and glutamate dehydrogenases 1 and 2, in the ACC of postmortem brain of individuals with autism (n = 7) and control subjects (n = 13). RESULTS: We found that the protein levels of kidney-type glutaminase, but not those of the other enzymes measured, in the ACC were significantly lower in subjects with autism than in controls. CONCLUSION: The results suggest that reduced expression of kidney-type glutaminase may account for putative alterations in glutamatergic neurotransmission in the ACC in autism.

2.
Mol Autism ; 3(1): 11, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23110844

RESUMO

BACKGROUND: Reelin regulates neuronal positioning in cortical brain structures and neuronal migration via binding to the lipoprotein receptors Vldlr and Lrp8. Reeler mutant mice display severe brain morphological defects and behavioral abnormalities. Several reports have implicated reelin signaling in the etiology of neurodevelopmental and psychiatric disorders, including autism, schizophrenia, bipolar disorder, and depression. Moreover, it has been reported that VLDLR mRNA levels are increased in the post-mortem brain of autistic patients. METHODS: We generated transgenic (Tg) rats overexpressing Vldlr, and examined their histological and behavioral features. RESULTS: Spontaneous locomotor activity was significantly increased in Tg rats, without detectable changes in brain histology. Additionally, Tg rats tended to show performance deficits in the radial maze task, suggesting that their spatial working memory was slightly impaired. Thus, Vldlr levels may be involved in determining locomotor activity and memory function. CONCLUSIONS: Unlike reeler mice, patients with neurodevelopmental or psychiatric disorders do not show striking neuroanatomical aberrations. Therefore, it is notable, from a clinical point of view, that we observed behavioral phenotypes in Vldlr-Tg rats in the absence of neuroanatomical abnormalities.

3.
Mol Autism ; 2: 16, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22011527

RESUMO

BACKGROUND: The neurobiological basis of autism remains poorly understood. The diagnosis of autism is based solely on behavioural characteristics because there are currently no reliable biological markers. To test whether the anterior pituitary hormones and cortisol could be useful as biological markers for autism, we assessed the basal serum levels of these hormones in subjects with autism and normal controls. FINDINGS: Using a suspension array system, we determined the serum levels of six anterior pituitary hormones, including adrenocorticotropic hormone and growth hormone, in 32 drug-naive subjects (aged 6 to 18 years, all boys) with autism, and 34 healthy controls matched for age and gender. We also determined cortisol levels in these subjects by enzyme-linked immunosorbent assay. Serum levels of adrenocorticotropic hormone, growth hormone and cortisol were significantly higher in subjects with autism than in controls. In addition, there was a significantly positive correlation between cortisol and adrenocorticotropic hormone levels in autism. CONCLUSION: Our results suggest that increased basal serum levels of adrenocorticotropic hormone accompanied by increased cortisol and growth hormone may be useful biological markers for autism.

4.
PLoS One ; 6(10): e25340, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21998651

RESUMO

BACKGROUND: It has recently been hypothesized that hyperglutamatergia in the brain is involved in the pathophysiology of autism. However, there is no conclusive evidence of the validity of this hypothesis. As peripheral glutamate/glutamine levels have been reported to be correlated with those of the central nervous system, the authors examined whether the levels of 25 amino acids, including glutamate and glutamine, in the platelet-poor plasma of drug-naïve, male children with high-functioning autism (HFA) would be altered compared with those of normal controls. METHODOLOGY/PRINCIPAL FINDINGS: Plasma levels of 25 amino acids in male children (N = 23) with HFA and normally developed healthy male controls (N = 22) were determined using high-performance liquid chromatography. Multiple testing was allowed for in the analyses. Compared with the normal control group, the HFA group had higher levels of plasma glutamate and lower levels of plasma glutamine. No significant group difference was found in the remaining 23 amino acids. The effect size (Cohen's d) for glutamate and glutamine was large: 1.13 and 1.36, respectively. Using discriminant analysis with logistic regression, the two values of plasma glutamate and glutamine were shown to well-differentiate the HFA group from the control group; the rate of correct classification was 91%. CONCLUSIONS/SIGNIFICANCE: The present study suggests that plasma glutamate and glutamine levels can serve as a diagnostic tool for the early detection of autism, especially normal IQ autism. These findings indicate that glutamatergic abnormalities in the brain may be associated with the pathobiology of autism.


Assuntos
Transtorno Autístico/sangue , Ácido Glutâmico/sangue , Glutamina/sangue , Adolescente , Transtorno Autístico/diagnóstico , Estudos de Casos e Controles , Criança , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Humanos , Masculino
5.
Mol Autism ; 2(1): 14, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21859478

RESUMO

BACKGROUND: Axon-guidance proteins play a crucial role in brain development. As the dysfunction of axon-guidance signaling is thought to underlie the microstructural abnormalities of the brain in people with autism, we examined the postmortem brains of people with autism to identify any changes in the expression of axon-guidance proteins. RESULTS: The mRNA and protein expression of axon-guidance proteins, including ephrin (EFN)A4, eEFNB3, plexin (PLXN)A4, roundabout 2 (ROBO)2 and ROBO3, were examined in the anterior cingulate cortex and primary motor cortex of autistic brains (n = 8 and n = 7, respectively) and control brains (n = 13 and n = 8, respectively) using real-time reverse-transcriptase PCR (RT-PCR) and western blotting. Real-time RT-PCR revealed that the relative expression levels of EFNB3, PLXNA4A and ROBO2 were significantly lower in the autistic group than in the control group. The protein levels of these three genes were further analyzed by western blotting, which showed that the immunoreactive values for PLXNA4 and ROBO2, but not for EFNB3, were significantly reduced in the ACC of the autistic brains compared with control brains. CONCLUSIONS: In this study, we found decreased expression of axon-guidance proteins such as PLXNA4 and ROBO2 in the brains of people with autism, and suggest that dysfunctional axon-guidance protein expression may play an important role in the pathophysiology of autism.

6.
PLoS One ; 6(5): e20470, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647375

RESUMO

BACKGROUND: Accumulating evidence suggests that dysregulation of the immune system is involved in the pathophysiology of autism spectrum disorders (ASD). The aim of the study was to explore immunological markers in peripheral plasma samples from non-medicated subjects with high-functioning ASD. METHODOLOGY/PRINCIPAL FINDINGS: A multiplex assay for cytokines and chemokines was applied to plasma samples from male subjects with high-functioning ASD (n = 28) and matched controls (n = 28). Among a total of 48 analytes examined, the plasma concentrations of IL-1ß, IL-1RA, IL-5, IL-8, IL-12(p70), IL-13, IL-17 and GRO-α were significantly higher in subjects with ASD compared with the corresponding values of matched controls after correction for multiple comparisons. CONCLUSION/SIGNIFICANCE: The results suggest that abnormal immune responses as assessed by multiplex analysis of cytokines may serve as one of the biological trait markers for ASD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/sangue , Citocinas/sangue , Adolescente , Biomarcadores/sangue , Estudos de Casos e Controles , Quimiocinas/sangue , Quimiocinas/imunologia , Criança , Transtornos Globais do Desenvolvimento Infantil/imunologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Citocinas/imunologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...