Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895283

RESUMO

Proteotoxicity is a contributor to the development of type 2 diabetes (T2D), but it is unknown whether protein misfolding in T2D is generalized or has special features. Here, we report a robust accumulation of misfolded proteins within the mitochondria of human pancreatic islets in T2D and elucidate its impact on ß cell viability. Surprisingly, quantitative proteomics studies of protein aggregates reveal that human islets from donors with T2D have a signature more closely resembling mitochondrial rather than ER protein misfolding. The matrix protease LonP1 and its chaperone partner mtHSP70 were among the proteins enriched in protein aggregates. Deletion of LONP1 in mice yields mitochondrial protein misfolding and reduced respiratory function, ultimately leading to ß cell apoptosis and hyperglycemia. Intriguingly, LONP1 gain of function ameliorates mitochondrial protein misfolding and restores human ß cell survival following glucolipotoxicity via a protease-independent effect requiring LONP1-mtHSP70 chaperone activity. Thus, LONP1 promotes ß cell survival and prevents hyperglycemia by facilitating mitochondrial protein folding. These observations may open novel insights into the nature of impaired proteostasis on ß cell loss in the pathogenesis of T2D that could be considered as future therapeutic targets.

2.
Nat Commun ; 12(1): 265, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431889

RESUMO

Most mitochondrial precursor polypeptides are imported from the cytosol into the mitochondrion, where they must efficiently undergo folding. Mitochondrial precursors are imported as unfolded polypeptides. For proteins of the mitochondrial matrix and inner membrane, two separate chaperone systems, HSP60 and mitochondrial HSP70 (mtHSP70), facilitate protein folding. We show that LONP1, an AAA+ protease of the mitochondrial matrix, works with the mtHSP70 chaperone system to promote mitochondrial protein folding. Inhibition of LONP1 results in aggregation of a protein subset similar to that caused by knockdown of DNAJA3, a co-chaperone of mtHSP70. LONP1 is required for DNAJA3 and mtHSP70 solubility, and its ATPase, but not its protease activity, is required for this function. In vitro, LONP1 shows an intrinsic chaperone-like activity and collaborates with mtHSP70 to stabilize a folding intermediate of OXA1L. Our results identify LONP1 as a critical factor in the mtHSP70 folding pathway and demonstrate its proposed chaperone activity.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dobramento de Proteína , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons , Proteínas de Choque Térmico HSP40 , Humanos , NADH Desidrogenase , Proteínas Nucleares , Agregados Proteicos , Ligação Proteica , Transdução de Sinais , Solubilidade
3.
Nat Commun ; 8: 15074, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429737

RESUMO

As noted by Warburg, many cancer cells depend on the consumption of glucose. We performed a genetic screen to identify factors responsible for glucose addiction and recovered the two subunits of the xCT antiporter (system xc-), which plays an antioxidant role by exporting glutamate for cystine. Disruption of the xCT antiporter greatly improves cell viability after glucose withdrawal, because conservation of glutamate enables cells to maintain mitochondrial respiration. In some breast cancer cells, xCT antiporter expression is upregulated through the antioxidant transcription factor Nrf2 and contributes to their requirement for glucose as a carbon source. In cells carrying patient-derived mitochondrial DNA mutations, the xCT antiporter is upregulated and its inhibition improves mitochondrial function and cell viability. Therefore, although upregulation of the xCT antiporter promotes antioxidant defence, it antagonizes glutamine metabolism and restricts nutrient flexibility. In cells with mitochondrial dysfunction, the potential utility of xCT antiporter inhibition should be further tested.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Cistina/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antioxidantes/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Cultura/química , Meios de Cultura/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/farmacologia , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais
4.
Autophagy ; 7(8): 854-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21490424

RESUMO

It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/metabolismo , Viabilidade Microbiana , Mutação/genética , Nitrogênio/deficiência , Fosforilação , Transporte Proteico , Saccharomyces cerevisiae/enzimologia
5.
Mol Microbiol ; 79(3): 633-46, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255108

RESUMO

Yak1 is a member of an evolutionarily conserved family of Ser/Thr protein kinases known as dual-specificity Tyr phosphorylation-regulated kinases (DYRKs). Yak1 was originally identified as a growth antagonist, which functions downstream of Ras/PKA signalling pathway. It has been known that Yak1 is phosphorylated by PKA in vitro and is translocated to the nucleus upon nutrient deprivation. However, the regulatory mechanisms for Yak1 activity and localization are largely unknown. In the present study, we investigated the role of PKA and Bmh1, a yeast 14-3-3 protein, in regulation of Yak1. We demonstrate that PKA-dependent phosphorylation of Yak1 on Ser295 and two minor sites inhibits nuclear localization of Yak1. We also show that intramolecular autophosphorylation on at least four Ser/Thr residues in the non-catalytic N-terminal domain is required for full kinase activity of Yak1. The most potent autophosphorylation site, Thr335, plays an essential role for Bmh1 binding in collaboration with a yet unidentified second binding site in the N-terminal domain. Bmh1 binding decreases the catalytic activity of Yak1 without affecting its subcellular localization. Since the binding of 14-3-3 proteins to Yak1 coincides with PKA activity, such regulatory mechanisms might allow cytoplasmic retention of an inactive form of Yak1 under high glucose conditions.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas 14-3-3/metabolismo , Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Biológicos , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química
6.
J Cell Sci ; 122(Pt 12): 2089-99, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19494127

RESUMO

The target of rapamycin (TOR) signaling pathway plays crucial roles in the regulation of eukaryotic cell growth. In Saccharomyces cerevisiae, nitrogen sources in the extracellular environment activate the TOR signaling pathway. However, the precise mechanisms underlying the regulation of TOR activity in response to extracellular nitrogen sources are poorly understood. Here, we report that degradation of Stp1, a transcription factor for amino acid uptake and a key effector of the SPS amino-acid-sensing pathway, is controlled by TOR activity in S. cerevisiae. Using a genome-wide protein localization study, we found that Stp1 disappeared from the nucleus upon inactivation of TOR complex 1 (TORC1) by rapamycin, suggesting the involvement of Stp1 in the TOR signaling pathway. Supporting this notion, a knockout mutant for the STP1 gene was found to be hypersensitive to rapamycin, and overexpression of STP1 conferred resistance to rapamycin. Interestingly, we found that the rapamycin-induced disappearance of Stp1 from the nucleus resulted from Stp1 degradation, which was dependent on the activity of a protein phosphatase 2A (PP2A)-like phosphatase, Sit4, which is a well-known downstream effector of TORC1. Taken together, our findings highlight an intimate connection between the amino-acid-sensing pathway and the rapamycin-sensitive TOR signaling pathway.


Assuntos
Aminoácidos/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Antifúngicos/farmacologia , Núcleo Celular/metabolismo , Farmacorresistência Fúngica/genética , Genoma Fúngico/efeitos dos fármacos , Proteínas Nucleares/genética , Organismos Geneticamente Modificados , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Processamento de Proteína Pós-Traducional/genética , Percepção de Quorum/genética , Percepção de Quorum/fisiologia , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...