Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(7): e2101592, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783464

RESUMO

A collagen-rich tumor microenvironment (TME) is associated with worse outcomes in cancer patients and contributes to drug resistance in many cancer types. In melanoma, stiff and fibrillar collagen-abundant tissue is observed after failure of therapeutic treatments with BRAF inhibitors. Increased collagen in the TME can affect properties of the extracellular matrix (ECM), including stiffness, adhesiveness, and interaction of integrins with triple helix forming nanostructures. Decoupling these biochemical and biophysical properties of the ECM can lead to a better understanding of how each of these individual properties affect melanoma cancer behavior and drug efficacy. In addition, as drug treatment can induce cancer cell phenotypic switch, cancer cell responsiveness to the TME can be dynamically changed during therapeutic treatments. To investigate cancer cell phenotype changes and the role of the cancer TME, poly(ethylene glycol) (PEG) hydrogels functionalized with collagen mimetic peptides (CMPs) is utilized, or an interpenetrating network (IPN) of type І collagen within the PEG system to culture various melanoma cell lines in the presence or absence of Vemurafenib (PLX4032) drug treatment is prepared. Additionally, the potential of using CMP functionalized PEG hydrogels, which can provide better tunability is explored, to replace the existing invadopodia assay platform based on fluorescent gelatin.


Assuntos
Melanoma , Podossomos , Colágeno/química , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Podossomos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microambiente Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-34308009

RESUMO

This review presents recent advances in the design of in vitro cancer models to study tumor cell migration, metastasis, and invasion in three-dimensions (3D). These cancer models are divided into two categories based on the biophysiological processes and structures simulated, namely (i) spheroid invasion models or (ii) vascularization models. Some recent advances to spheroid invasion models include new methods to make them amenable to high-throughput settings. In vascularization models, cancer cell extravasation, intravasation, and angiogenesis have been emulated. Finally, 3D bioprinting and microfluidic technologies are allowing researchers to recapitulate some of the complex architectural and microenvironmental changes that can drive cancer cells migration from the extracellular matrix and basement membrane to blood vessels.

3.
ACS Biomater Sci Eng ; 4(2): 378-387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527570

RESUMO

Proteases are involved in almost every important cellular activity, from embryonic morphogenesis to apoptosis. To study protease activity in situ, hydrogels provide a synthetic mimic of the extracellular matrix (ECM) and have utility as a platform to study activity, such as those related to cell migration, in three-dimensions. While 3-dimensional visualization of protease activity could prove quite useful to elucidate the proteolytic interaction at the interface between cells and their surrounding environment, there has been no versatile tool to visualize local proteolytic activity in real time. Here, micron-sized gels were synthesized by inverse suspension polymerization using thiolene photo-click chemistry. The size distribution was selected to avoid cellular uptake and to lower cytotoxicity, while simultaneously allowing the integration of peptide-based FRET sensors of local cell activity. Proteolytic activity of collagenase was detected within an hour via changes in fluorescence of embedded microgels; incubation of microgel sensors with A375 melanoma cells showed upregulated MMP activity in the presence of soluble fibronectins in media. The microgel sensors were readily incorporated into both gelatin and poly(ethylene glycol) (PEG) hydrogels and used to successfully detect spatiotemporal proteolytic activity of A375 melanoma cells. Finally, a tumor model was constructed from a hydrogel microwell array that was used to aggregate A375 melanoma cells, and local variations in proteolytic activity were monitored as a function of distance from the cell aggregate center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...