Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(14): 6261-6269, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297615

RESUMO

The remarkable underwater adhesion of mussel foot proteins has long been an inspiration in the design of peptidomimetic materials. Although the synergistic wet adhesion of catechol and lysine has been recently highlighted, the critical role of the polymeric backbone has remained largely underexplored. Here, we present a peptidomimetic approach using poly(ethylene glycol) (PEG) as a platform to evaluate the synergistic compositional relation between the key amino acid residues (i.e., DOPA and lysine), as well as the role of the polyether backbone in interfacial adhesive interactions. A series of PEG-based peptides (PEGtides) were synthesized using functional epoxide monomers corresponding to catechol and lysine via anionic ring-opening polymerization. Using a surface force apparatus, highly synergistic surface interactions among these PEGtides with respect to the relative compositional ratio were revealed. Furthermore, the critical role of the catechol-amine synergy and diverse hydrogen bonding within the PEGtides in the superior adhesive interactions was verified by molecular dynamics simulations. Our study sheds light on the design of peptidomimetic polymers with reduced complexity within the framework of a polyether backbone.


Assuntos
Bivalves , Peptidomiméticos , Adesivos/química , Animais , Ligação de Hidrogênio , Lisina/química , Polímeros/química , Proteínas/química
2.
RSC Adv ; 9(14): 7777-7785, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521184

RESUMO

This paper describes the synthesis of long-chain-alkylated poly(arbutin)s (poly(Arb)-R x , where R = alkyl-chain length and x = degree of substitution (DS)) and their aqueous micelle formation. DS was controlled by tailoring the alkyl reagent/main-chain phenol substituent feed ratio. The critical micelle concentrations (CMCs) of poly(Arb)-R x were determined as 1.3-5.2 mg mL-1 by the surface tension method. Introduction of longer alkyl substituents decreased CMC and also decreased aqueous solubility. In DLS measurement, the average micelle diameters were 225-616 nm, and micelle size decreased with increasing DS because of increased stabilization by hydrophobic alkyl substituents. Transmission electron microscopy indicated that mainly wormlike cylindrical micelles were formed, even with highly hydrophilic polymers. The alkylated polymer exhibited no cytotoxicity, and their antioxidant abilities were evaluated by the ß-carotene bleaching method. Only 0.049 mol equivalents of poly(Arb)-C830 to linoleic acid was sufficient to preserve the ß-carotene.

3.
ACS Appl Mater Interfaces ; 10(2): 1520-1527, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29256590

RESUMO

In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.


Assuntos
Resinas Compostas/química , Colagem Dentária , Teste de Materiais , Metacrilatos , Cimentos de Resina , Silanos , Estresse Mecânico , Propriedades de Superfície
4.
Adv Mater ; 29(39)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833661

RESUMO

Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.

5.
Sci Rep ; 5: 18807, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26689549

RESUMO

An innovative nucleus-targeting zwitterionic carbon dot (CD) vehicle has been developed for anticancer drug delivery and optical monitoring. The zwitterionic functional groups of the CDs introduced by a simple one-step synthesis using ß-alanine as a passivating and zwitterionic ligand allow cytoplasmic uptake and subsequent nuclear translocation of the CDs. Moreover, multicolor fluorescence improves the accuracy of the CDs as an optical code. The CD-based drug delivery system constructed by non-covalent grafting of doxorubicin, exhibits superior antitumor efficacy owing to enhanced nuclear delivery in vitro and tumor accumulation in vivo, resulting in highly effective tumor growth inhibition. Since the zwitterionic CDs are highly biocompatible and effectively translocated into the nucleus, it provides a compelling solution to a multifunctional nanoparticle for substantially enhanced nuclear uptake of drugs and optical monitoring of translocation.


Assuntos
Carbono/farmacologia , Núcleo Celular/metabolismo , Sistemas de Liberação de Medicamentos , Animais , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Células HeLa , Humanos , Íons , Luminescência , Camundongos Nus , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Nanomedicina Teranóstica
6.
Biomacromolecules ; 15(2): 628-34, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24432713

RESUMO

Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.


Assuntos
Benzopiranos/química , Sistemas de Liberação de Medicamentos , Glicerol/química , Indóis/química , Luz , Micelas , Nitrocompostos/química , Polímeros/química , Benzopiranos/síntese química , Linhagem Celular , Sobrevivência Celular , Glicerol/síntese química , Células HeLa , Humanos , Indóis/síntese química , Estrutura Molecular , Nitrocompostos/síntese química , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
7.
Sci Rep ; 3: 3367, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24284474

RESUMO

A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 µM dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Grafite/química , Óxidos/química , Trombina/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Humanos , Limite de Detecção , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...