Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399731

RESUMO

Some insertion sequence (IS) elements were actively transposed using oxidative stress conditions, including gamma irradiation and hydrogen peroxide treatment, in Deinococcus geothermalis, a radiation-resistant bacterium. D. geothermalis wild-type (WT), sigma factor gene-disrupted (∆dgeo_0606), and LysR gene-disrupted (∆dgeo_1692) mutants were examined for IS induction that resulted in non-pigmented colonies after gamma irradiation (5 kGy) exposure. The loss of pigmentation occurred because dgeo_0524, which encodes a phytoene desaturase in the carotenoid pathway, was disrupted by the transposition of IS elements. The types and loci of the IS elements were identified as ISDge2 and ISDge6 in the ∆dgeo_0606 mutant and ISDge5 and ISDge7 in the ∆dgeo_1692 mutant, but were not identified in the WT strain. Furthermore, 80 and 100 mM H2O2 treatments induced different transpositions of IS elements in ∆dgeo_0606 (ISDge5, ISDge6, and ISDge7) and WT (ISDge6). However, no IS transposition was observed in the ∆dgeo_1692 mutant. The complementary strain of the ∆dgeo_0606 mutation showed recovery effects in the viability assay; however, the growth-delayed curve did not return because the neighboring gene dgeo_0607 was overexpressed, probably acting as an anti-sigma factor. The expression levels of certain transposases, recognized as pivotal contributors to IS transposition, did not precisely correlate with active transposition in varying oxidation environments. Nevertheless, these findings suggest that specific IS elements integrated into dgeo_0524 in a target-gene-deficient and oxidation-source-dependent manner.

2.
Front Microbiol ; 14: 1110084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937269

RESUMO

Deinococcus radiopugnans DY59 (formerly Deinococcus swuensis DY59) is a radiation-resistant bacterium isolated from soil. From the 3.5 Mb genomic DNA sequence of strain DY59 (December 2014), 31 insertion sequence (IS) elements of six IS families including IS1, IS4, IS5, IS66, IS630, and IS701 and five unclassified IS elements were detected. Upon induction of oxidative stress with 80 and 100 mM H2O2, the unique ISs of the IS4 family member were actively translocated into a carotenoid biosynthesis gene phytoene desaturase (QR90_10400), resulting in non-pigment phenotypic selection. Therefore, these active transpositions of a specific IS family member were induced by oxidative stress at 80 and 100 mM H2O2. Furthermore, D. radiopugnans DY59 exhibited extremely higher MIC values against H2O2 treatment. To explain this phenomenon, qRT-PCR was conducted to assess the expression levels of catalase and three LysR family regulators. Our findings indicated that the ISDrpg2 and ISDrpg3 elements of the IS4 family were actively transposed into the phytoene desaturase gene by H2O2 treatment via replicative transposition. However, high H2O2 resistance did not originate from H2O2-induced expression of catalase and LysR family regulators.

3.
Int J Mol Sci ; 23(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077162

RESUMO

Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium Deinococcus geothermalis subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (rsmG, rpsL, and mthA) were identified. (3) Results: ISDge6 of the IS5 family integrated into the rsmG gene (dgeo_2335), called SrsmG, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of dgeo_2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of rsmG. Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.


Assuntos
Deinococcus , Estreptomicina , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Deinococcus/genética , Deinococcus/metabolismo , Farmacorresistência Bacteriana/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Mutação , Estresse Oxidativo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Estreptomicina/farmacologia
4.
J Microbiol Methods ; 196: 106473, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35469976

RESUMO

Insertion sequences (ISs) of the radiation-resistant bacterium Deinococcus geothermalis are transposed into other loci by oxidative stress through hydrogen peroxide treatment. Gamma irradiation and dielectric barrier discharge (DBD) plasma radiation are known to produce a variety of oxidative stress agents such as reactive oxygen species and reactive nitrogen species. Therefore, to determine whether the transposition of ISs was induced in D. geothermalis by both gamma irradiation and DBD plasma radiation, we selected non-pigmented mutants with disrupted target genes encoding carotenoid biosynthesis enzymes such as a phytoene synthase (dgeo_0523) and a phytoene desaturase (dgeo_0524). Different DNA-binding protein-deficient mutants exhibited novel transposition of ISs. Dps (dgeo_0257), OxyR (dgeo_1888), and the LysR (dgeo_2840) family regulator, in addition to cystine importer-disrupted and -overexpressed mutants (dgeo_1986-87 and dgeo_1985R) and wild-type D. geothermalis were tested in this study. Active IS transposition was not detected in two wild-type control species (Deinococcus radiodurans and Deinococcus radiopugnans) after phenotypic selection in gamma irradiation. Our finding demonstrated that gamma irradiation triggers the transposition of particular IS elements, especially ISDge2 and ISDge3 of the IS1 family, ISDge5 of the IS701 family, and ISDge6 of the IS5 family in wild-type strain and the Δdgeo_0257, Δdgeo_1986-87, Δdgeo_1985R, and Δdgeo_2840 mutants. Furthermore, DBD plasma radiation triggered the transposition of ISDge11 of the IS4 family in the wild-type strain; ISDge6 of the IS5 family on Δdgeo_0257, Δdgeo_1888 and Δdgeo_2840; ISDge5 of the IS701 family on Δdgeo_0257 strain.


Assuntos
Elementos de DNA Transponíveis , Deinococcus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deinococcus/genética , Deinococcus/efeitos da radiação , Raios gama , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo
5.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35326130

RESUMO

Bacterial genomes contain numerous insertion sequences (ISs) as transposable elements involved in actions such as the sequestration, transmission, mutation and activation of genes that can influence the responsive capacity of the organism to environmental challenges. To date, at least 30 IS families have been identified. In this review, we describe how certain ISs are transposed to carotenoid biosynthesis genes, such as phytoene synthase and phytoene desaturase, when radiation-resistant Deinococcus geothermalis with a redox imbalance and a targeted gene disruption mutation is exposed to oxidative stressors, such as gamma-irradiation, dielectric bilayer discharge plasma and hydrogen peroxide. We also explain the genetic features of IS elements, spontaneous mutation and various stress responses, including nutrient limitation, and physicochemical and oxidative stress, associated with the active transposition of bacterial ISs. Based on the current knowledge, we posit that the redox signalling mechanism inducing IS transposition involves redox sensing and redox switching for the activation of transposase expression and its activity.

6.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613913

RESUMO

The roles of two interrelated DNA protection protein in starved cells (Dps)-putative Dps Dgeo_0257 and Dgeo_0281-as orthologous proteins to DrDps1 for DNA binding, protection, and metal ion sensing were characterised in a Deinococcus geothermalis strain. Dgeo_0257 exhibited high DNA-binding affinity and formed a multimeric structure but lacked the conserved amino acid sequence for ferroxidase activity. In contrast, the Dgeo_0281 (DgDps1) protein was abundant in the early exponential phase, had a lower DNA-binding activity than Dgeo_0257, and was mainly observed in its monomeric or dimeric forms. Electrophoretic mobility shift assays demonstrated that both purified proteins bound nonspecifically to DNA, and their binding ability was affected by certain metal ions. For example, in the presence of ferrous and ferric ions, neither Dgeo_0257 nor Dgeo_0281 could readily bind to DNA. In contrast, both proteins exhibited more stable DNA binding in the presence of zinc and manganese ions. Mutants in which the dps gene was disrupted exhibited higher sensitivity to oxidative stress than the wild-type strain. Furthermore, the expression levels of each gene showed an opposite correlation under H2O2 treatment conditions. Collectively, these findings indicate that the putative Dps Dgeo_0257 and DgDps1 from D. geothermalis are involved in DNA binding and protection in complementary interplay ways compared to known Dps.


Assuntos
Deinococcus , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deinococcus/metabolismo , Metais/metabolismo , DNA/metabolismo
7.
Antioxidants (Basel) ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679757

RESUMO

The transposition of insertion sequence elements was evaluated among different Deinococcus geothermalis lineages, including the wild-type, a cystine importer-disrupted mutant, a complemented strain, and a cystine importer-overexpressed strain. Cellular growth reached early exponential growth at OD600 2.0 and late exponential growth at OD600 4.0. Exposing the cells to hydrogen peroxide (80-100 mM) resulted in the transposition of insertion sequences (ISs) in genes associated with the carotenoid biosynthesis pathway. Particularly, ISDge7 (an IS5 family member) and ISDge5 (an IS701 family member) from the cystine importer-disrupted mutant were transposed into phytoene desaturase (dgeo_0524) via replicative transposition. Further, the cystine importer-overexpressed strain Δdgeo_1985R showed transposition of both ISDge2 and ISDge5 elements. In contrast, IS transposition was not detected in the complementary strain. Interestingly, a cystine importer-overexpressing strain exhibited streptomycin resistance, indicating that point mutation occurred in the rpsL (dgeo_1873) gene encoding ribosomal protein S12. qRT-PCR analyses were then conducted to evaluate the expression of oxidative stress response genes, IS elements, and low-molecular-weight thiol compounds such as mycothiol and bacillithiol. Nevertheless, the mechanisms that trigger IS transposition in redox imbalance conditions remain unclear. Here, we report that the active transposition of different IS elements was affected by intracellular redox imbalances caused by cystine importer deficiencies or overexpression.

8.
Oncol Rep ; 46(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013380

RESUMO

Studies on cultured cancer cells or cell lines have revealed multiple acid extrusion mechanisms and their involvement in cancer cell growth and progression. In the present study, the role of the sodium bicarbonate transporters (NBCs) in prostate cancer cell proliferation and viability was examined. qPCR revealed heterogeneous expression of five NBC isoforms in human prostate cancer cell lines LNCaP, PC3, 22RV1, C4-2, DU145, and the prostate cell line RWPE-1. In fluorescence pH measurement of LNCaP cells, which predominantly express NBCe1, Na+ and HCO3--mediated acid extrusion was identified by bath ion replacement and sensitivity to the NBC inhibitor S0859. NBCe1 knockdown using siRNA oligonucleotides decreased the number of viable cells, and pharmacological inhibition with S0859 (50 µM) resulted in a similar decrease. NBCe1 knockdown and inhibition also increased cell death, but this effect was small and slow. In PC3 cells, which express all NBC isoforms, NBCe1 knockdown decreased viable cell number and increased cell death. The effects of NBCe1 knockdown were comparable to those by S0859, indicating that NBCe1 among NBCs primarily contributes to PC3 cell proliferation and viability. S0859 inhibition also decreased the formation of cell spheres in 3D cultures. Immunohistochemistry of human prostate cancer tissue microarrays revealed NBCe1 localization to the glandular epithelial cells in prostate tissue and robust expression in acinar and duct adenocarcinoma. In conclusion, our study demonstrates that NBCe1 regulates acid extrusion in prostate cancer cells and inhibiting or abolishing this transporter decreases cancer cell proliferation.


Assuntos
Neoplasias da Próstata/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Regulação para Cima , Benzamidas/farmacologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/genética , Sódio/metabolismo , Bicarbonato de Sódio/metabolismo , Sulfonamidas/farmacologia , Análise Serial de Tecidos , Regulação para Cima/efeitos dos fármacos
9.
Micromachines (Basel) ; 11(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604827

RESUMO

This study presents the fabrication and characterization of a piezoelectric micromachined ultrasonic transducer (pMUT; radius: 40 µm) using a patterned aluminum nitride (AlN) thin film as the active piezoelectric material. A 20 × 20 array of pMUTs using a 1 µm thick AlN thin film was designed and fabricated on a 2 × 2 mm2 footprint for a high fill factor. Based on the electrical impedance and phase of the pMUT array, the electromechanical coefficient was ~1.7% at the average resonant frequency of 2.82 MHz in air. Dynamic displacement of the pMUT surface was characterized by scanning laser Doppler vibrometry. The pressure output while immersed in water was 19.79 kPa when calculated based on the peak displacement at the resonant frequency. The proposed AlN pMUT array has potential applications in biomedical sensing for healthcare, medical imaging, and biometrics.

10.
Sci Rep ; 9(1): 9551, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266969

RESUMO

Critical limb ischemia, the most severe form of peripheral artery disease, leads to extensive damage and alterations to skeletal muscle homeostasis. Although recent research has investigated the tissue-specific responses to ischemia, the role of the muscle stem cell in the regeneration of its niche components within skeletal muscle has been limited. To elucidate the regenerative mechanism of the muscle stem cell in response to ischemic insults, we explored cellular interactions between the vasculature, neural network, and muscle fiber within the muscle stem cell niche. Using a surgical murine hindlimb ischemia model, we first discovered a significant increase in subsynaptic nuclei and remodeling of the neuromuscular junction following ischemia-induced denervation. In addition, ischemic injury causes significant alterations to the myofiber through a muscle stem cell-mediated accumulation of total myonuclei and a concomitant decrease in myonuclear domain size, possibly to enhance the transcriptional and translation output and restore muscle mass. Results also revealed an accumulation of total mitochondrial content per myonucleus in ischemic myofibers to compensate for impaired mitochondrial function and high turnover rate. Taken together, the findings from this study suggest that the muscle stem cell plays a role in motor neuron reinnervation, myonuclear accretion, and mitochondrial biogenesis for skeletal muscle regeneration following ischemic injury.


Assuntos
Extremidades/irrigação sanguínea , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Junção Neuromuscular , Animais , Modelos Animais de Doenças , Isquemia/etiologia , Camundongos , Mitocôndrias Musculares/metabolismo , Mioblastos/metabolismo , Regeneração
11.
Oxid Med Cell Longev ; 2019: 4264580, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30728885

RESUMO

Emerging evidence indicates the pronounced role of inflammasome activation linked to reactive oxygen species (ROS) in the sterile inflammatory response triggered by ischemia/reperfusion (I/R) injury. Ethyl pyruvate (EP) is an antioxidant and conveys myocardial protection against I/R injury, while the exact mechanisms remain elusive. We aimed to investigate the effect of EP on myocardial I/R injury through mechanisms related to ROS and inflammasome regulation. The rats were randomly assigned to four groups: (1) sham, (2) I/R-control (IRC), (3) EP-pretreatment + I/R, and (4) I/R + EP-posttreatment. I/R was induced by a 30 min ligation of the left anterior descending artery followed by 4 h of reperfusion. EP (50 mg/kg) was administered intraperitoneally at 1 h before ischemia (pretreatment) or upon reperfusion (posttreatment). Both pre- and post-EP treatment resulted in significant reductions in myocardial infarct size (by 34% and 31%, respectively) and neutrophil infiltration. I/R-induced myocardial expressions of NADPH oxidase-4, carnitine palmitoyltransferase 1A, and thioredoxin-interacting protein (TXNIP) were mitigated by EP. EP treatment was associated with diminished inflammasome activation (NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein, and caspase-1) and interleukin-1ß induced by I/R. I/R-induced phosphorylation of ERK and p38 were also mitigated with EP treatments. In H9c2 cells, hypoxia-induced TXNIP and NLRP3 expressions were inhibited by EP and to a lesser degree by U0126 (MEK inhibitor) and SB203580 (p38 inhibitor) as well. EP's downstream protective mechanisms in myocardial I/R injury would include mitigation of ROS-mediated NLRP3 inflammasome upregulation and its associated pathways, partly via inhibition of hypoxia-induced phosphorylation of ERK and p38.


Assuntos
Inflamassomos/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piruvatos/uso terapêutico , Animais , Humanos , Masculino , Piruvatos/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio
12.
Tissue Eng Part C Methods ; 25(2): 59-70, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30648479

RESUMO

IMPACT STATEMENT: The goal of this study was to determine the threshold for a critically sized, nonhealing muscle defect by characterizing key components in the balance between fibrosis and regeneration as a function of injury size in the mouse quadriceps. There is currently limited understanding of what leads to a critically sized muscle defect and which muscle regenerative components are functionally impaired. With the substantial increase in preclinical VML models as testbeds for tissue engineering therapeutics, defining the critical threshold for VML injuries will be instrumental in characterizing therapeutic efficacy and potential for subsequent translation.


Assuntos
Doenças Musculares/patologia , Doenças Musculares/terapia , Miofibrilas/fisiologia , Junção Neuromuscular/citologia , Músculo Quadríceps/citologia , Músculo Quadríceps/lesões , Engenharia Tecidual , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Quadríceps/fisiologia , Alicerces Teciduais , Cicatrização
13.
J Health Commun ; 24(1): 9-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30592700

RESUMO

Do individuals gain from multiple sources of information that are often dissonant, such as expert knowledge and lay knowledge of health interventions? What are the foundations for any gain? For these questions, this paper investigates differences in the perceived health outcomes among the users of complementary and alternative medicine (CAM) who found their selection of CAM treatments on different knowledge bases. By using data from the 2012 US National Health Interview Survey (NHIS), the paper shows that CAM users report better health outcomes in the treatment episodes where they use CAM treatments that experts (i.e. health care professionals) or lay people (i.e. family/friends/co-workers) recommend, compared to those episodes where they use CAM treatments that nobody recommends. More interestingly, CAM users report even better health outcomes from the treatment episodes where they use CAM treatments that both professionals and family/friends/co-workers recommend, compared to those episodes where they use CAM treatments that only professionals or only family/friends/co-workers recommend. The paper conceptualizes these gains as emerging from users' mobilization of the thick knowledge that experts and lay people produce together. It stresses the importance of health communication where expert accounts and lay accounts are both paid heed.


Assuntos
Terapias Complementares/estatística & dados numéricos , Amigos/psicologia , Relações Interpessoais , Relações Médico-Paciente , Médicos/psicologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Pesquisas sobre Atenção à Saúde , Conhecimentos, Atitudes e Prática em Saúde , Promoção da Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos , Adulto Jovem
14.
Sci Adv ; 4(8): eaar4008, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30116776

RESUMO

Muscle satellite cells (MuSCs) play a central role in muscle regeneration, but their quantity and function decline with comorbidity of trauma, aging, and muscle diseases. Although transplantation of MuSCs in traumatically injured muscle in the comorbid context of aging or pathology is a strategy to boost muscle regeneration, an effective cell delivery strategy in these contexts has not been developed. We engineered a synthetic hydrogel-based matrix with optimal mechanical, cell-adhesive, and protease-degradable properties that promotes MuSC survival, proliferation, and differentiation. Furthermore, we establish a biomaterial-mediated cell delivery strategy for treating muscle trauma, where intramuscular injections may not be applicable. Delivery of MuSCs in the engineered matrix significantly improved in vivo cell survival, proliferation, and engraftment in nonirradiated and immunocompetent muscles of aged and dystrophic mice compared to collagen gels and cell-only controls. This platform may be suitable for treating craniofacial and limb muscle trauma, as well as postoperative wounds of elderly and dystrophic patients.


Assuntos
Envelhecimento , Hidrogéis/química , Músculo Esquelético/citologia , Distrofias Musculares/terapia , Células Satélites de Músculo Esquelético/transplante , Ferimentos e Lesões/terapia , Animais , Diferenciação Celular , Comorbidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Regeneração , Células Satélites de Músculo Esquelético/citologia , Engenharia Tecidual , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
15.
PLoS One ; 13(8): e0198307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114208

RESUMO

BACKGROUND: Diabetic patients are susceptible to renal ischemia-reperfusion injury, which leads to perioperative complications. Activation of NOD-like receptor protein 3 (NLRP3) inflammasome participates in the development of diabetes, and contributes to renal ischemia-reperfusion injury. Dexmedetomidine (DEX), a highly selective α2-adrenoreceptor agonist, shows renoprotective effects against ischemia-reperfusion injury. We aimed to elucidate the effects, underlying mechanisms, and optimal timing of DEX treatment in diabetic rats. METHODS: Male Sprague-Dawley rats (n = 12 per group) were randomly divided into normal-sham, diabetes-sham, diabetes-ischemia-reperfusion-control, diabetes-ischemia-reperfusion-DEX-pre-treatment, and diabetes-ischemia-reperfusion-DEX-post-treatment groups. Renal ischemia-reperfusion injury was induced in diabetic rats by occlusion of both renal arteries for 45 min, followed by reperfusion for 24 h. DEX (10 µg/kg) was administered intraperitoneally 1 h before ischemia (pre-treatment) or upon reperfusion (post-treatment). After reperfusion, renal tissue was biochemically and histopathologically evaluated. RESULTS: DEX treatment attenuated ischemia reperfusion-induced increase in NLRP3, caspase-1, IL-1ß, phospho-AKT, and phospho-ERK signaling. Moreover, oxidative stress injury, inflammatory reactions, apoptosis, and renal tubular damage were favorably modulated by DEX treatment. Furthermore, post-reperfusion treatment with DEX was significantly more effective than pre-treatment in modulating NLRP3 inflammasome, AKT and ERK signaling, and oxidative stress. CONCLUSIONS: This study shows that the protective effects of DEX in renal ischemia-reperfusion injury are preserved in diabetic conditions and may potentially provide a basis for the use of DEX in clinical treatment of renal ischemia-reperfusion injury.


Assuntos
Dexmedetomidina/farmacologia , Diabetes Mellitus Experimental/patologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/patologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Hemodinâmica/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/fisiopatologia , Estreptozocina
16.
Biomaterials ; 170: 58-69, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653287

RESUMO

High-density lipoprotein (HDL) is a key regulator of lipid homeostasis through its native roles like reverse cholesterol transport. The reconstitution of this natural nanoparticle (NP) has become a nexus between nanomedicine and multi-disease therapies, for which a major portion of HDL functionality is attributed to its primary scaffolding protein, apolipoprotein A1 (apoA1). ApoA1-mimetic peptides were formulated as cost-effective alternatives to apoA1-based therapies; reverse-4F (r4F) is one such peptide used as part of a nanoparticle platform. While similarities between r4F- and apoA1-based HDL-mimetic nanoparticles have been identified, key functional differences native to HDL have remained undetected. In the present study, we executed a multidisciplinary approach to uncover these differences by exploring the form, function, and medical applicability of engineered HDL-mimetic NPs (eHNPs) made from r4F (eHNP-r4F) and from apoA1 (eHNP-A1). Comparative analyses of the eHNPs through computational molecular dynamics (MD), advanced microfluidic NP synthesis and screening technologies, and in vivo animal model studies extracted distinguishable eHNP characteristics: the eHNPs share identical structural and compositional characteristics with distinct differences in NP stability and organization; eHNP-A1 could more significantly stimulate anti-inflammatory responses characteristic of the scavenger receptor class B type 1 (SR-B1) mediated pathways; and eHNP-A1 could outperform eHNP-r4F in the delivery of a model hydrophobic drug to an in vivo tumor. The biomimetic microfluidic technologies and MD simulations uniquely enabled our comparative analysis through which we determined that while eHNP-r4F is a capable NP with properties mimicking natural eHNP-A1, challenges remain in reconstituting the full functionality of NPs naturally derived from humans.


Assuntos
Materiais Biomiméticos/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apolipoproteína A-I/metabolismo , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Células HL-60 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/ultraestrutura , Peptídeos/metabolismo , Fatores de Tempo , Engenharia Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Thorac Cardiovasc Surg ; 155(4): 1650-1658, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29195627

RESUMO

BACKGROUND: Hyperglycemia (HG) is common in cardiovascular surgeries due to diabetes, inflammation, and the neuroendocrine stress response. HG aggravates renal ischemia-reperfusion (I/R) injury through an increased inflammatory response, and blunts the protective effect of various measures. Ethyl pyruvate (EP) provides anti-inflammatory effects against I/R injury via inhibition of high-mobility group box 1 protein (HMGB1) release. This study aimed to determine the renoprotective effect of EP against I/R injury under HG. METHODS: Sprague-Dawley rats were randomly assigned at random to 8 groups: normoglycemia (NG)-sham, NG-I/R-control, NG-EP-I/R (pretreatment), NG-I/R-EP (posttreatment), HG-sham, HG-I/R-control, HG-EP-I/R, and HG-I/R-EP. Renal I/R was induced by 45 minutes of ischemia (clamping of renal arteries), followed by 24 hours of reperfusion. EP (50 mg/kg) was administered intraperitoneally at 1 h before ischemia (pretreatment) or on reperfusion (posttreatment). RESULTS: I/R injury under HG significantly aggravated the degree of renal tubular apoptosis and damage compared with the NG groups, which could be attenuated by both pretreatment and posttreatment of EP. I/R-induced increases in HMGB1 and Toll-like receptors (TLRs), activation of NF-kB, and resultant alterations in interleukin-1ß, tumor necrosis factor-α, proapoptotic Bax, and antiapoptotic Bcl-2 were all favorably modulated by EP treatment in both the NG and HG groups compared with their corresponding control groups. CONCLUSIONS: Despite aggravation of renal I/R injury by HG through amplified inflammation, EP administration showed similar suppression of the HMGB1-TLR-NF-kB pathway in the HG and NG groups. EP retained anti-inflammatory, antiapoptotic, and renoprotective effects in the HG groups, whether administered before ischemia or on reperfusion.


Assuntos
Anti-Inflamatórios/farmacologia , Glicemia/metabolismo , Hiperglicemia/tratamento farmacológico , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Piruvatos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Citoproteção , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Hiperglicemia/sangue , Hiperglicemia/complicações , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
18.
Int J Cardiol ; 252: 156-162, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169909

RESUMO

BACKGROUND: Hyperglycemia (HG) exacerbates myocardial ischemia/reperfusion (I/R) injury and renders protective strategies ineffective by amplified inflammatory response via enhanced high-mobility group box-1 (HMGB1) release. This study investigated the role of ethyl pyruvate (EP) against myocardial I/R injury under a clinically relevant HG condition. METHODS: Sprague-Dawley rats (n=76) were randomly assigned to 6 groups: normoglycemia (NG)-Sham, NG-I/R-control (C, saline), NG-I/R-EP treatment (50mg/kg) upon reperfusion, HG-Sham, HG-I/R-C, and HG-I/R-EP treatment upon reperfusion. HG was induced by 1.2g/kg dextrose. I/R was induced by ligation of the left anterior descending artery for 30min followed by 4h of reperfusion. RESULTS: HG resulted in exacerbation of myocardial infarct size by 19% with amplified activation of HMGB1-receptors of advanced glycation end products/toll like receptors-NF-κB pathway compared to NG following I/R, which all could be attenuated by EP. EP treatment was associated with diminished tumor necrosis factor-α, interleukin-1ß, and interleukin-6 expressions. It also served to normalize the increase in pro-apoptotic Bax and the decrease in anti-apoptotic Bcl-2 protein levels. These effects were associated with decreased myocardial apoptosis and infarct size (by 30% and 36% in the NG and HG groups, respectively) regardless of the glycemic condition. CONCLUSION: HG exacerbated myocardial I/R injury through amplified inflammatory response via increased HMGB1 level. EP treatment upon reperfusion conveyed significant myocardial protection against the I/R injury under both NG and HG conditions. Common to both glycemic conditions, associated mechanisms involved attenuated increase in HMGB1 level and suppression of its down-stream pathways.


Assuntos
Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/sangue , Hiperglicemia/sangue , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Piruvatos/uso terapêutico , Animais , Hiperglicemia/complicações , Traumatismo por Reperfusão Miocárdica/etiologia , Piruvatos/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 12(2): e0171147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28152042

RESUMO

Hyperglycemia, which reduces the efficacy of treatments and worsens clinical outcomes, is common in stroke. Ability of pregabalin to reduce neuroexcitotoxicity may provide protection against stroke, even under hyperglycemia. We investigated its protective effect against hyperglycemic stroke and its possible molecular mechanisms. Male Wistar rats administered dextrose to cause hyperglycemia, underwent middle cerebral artery occlusion for 1 h and subsequent reperfusion. Rats were treated with an intraperitoneal injection of 30 mg/kg pregabalin or an equal amount of normal saline at the onset of reperfusion (n = 16 per group). At 24 h after reperfusion, neurological deficit, infarct volume, and apoptotic cell count were assessed. Western blot analysis was performed to determine protein expression of high-mobility group box 1 (HMGB1), toll-like receptor-4 (TLR-4), phosphorylated nuclear factor-kappa B (p-NF-κB), interleukin-1beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), phosphorylated inducible and endothelial nitric oxide synthase (p-iNOS, p-eNOS), Bcl-2, Bax, Cytochrome C, and caspase-3 in the brain. Pregabalin-treated rats showed significantly improved neurological function (31% decrease in score), reduced infarct size (by 33%), fewer apoptotic cells (by 63%), and lower expression levels of HMGB1, TLR4, p-NF-κB, IL-1ß, and TNF- α, compared with control rats. Decreased p-iNOS and increased p-eNOS expressions were also observed. Expression of Bax, Cytochrome C, and cleaved caspase-3/caspase3 was significantly downregulated, while Bcl-2 expression was increased by pregabalin treatment. Pregabalin administration upon reperfusion decreased neuronal death and improved neurological function in hyperglycemic stroke rats. Cogent mechanisms would include attenuation of HMGB1/TLR-4-mediated inflammation and favorable modulation of the NOS.


Assuntos
Proteína HMGB1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Pregabalina/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/complicações , Infarto Encefálico/metabolismo , Infarto Encefálico/terapia , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperglicemia/complicações , Injeções Intraperitoneais , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/complicações , Receptor 4 Toll-Like/metabolismo
20.
J Pharm Sci ; 106(4): 961-967, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27964938

RESUMO

In this study, we evaluated the effect of coadministered metformin on the biliary excretion and liver concentration of atorvastatin. To investigate the inhibitory effect of metformin on biliary efflux transporters, the transport of atorvastatin in MDCKII-MDR1, BCRP, and MRP2 was evaluated. The effects of metformin on the steady state liver concentration and biliary excretion of atorvastatin and 2-hydroxyatorvastatin were evaluated in SDR and Mrp2-deficient EHBR. Metformin did not inhibit the transport of atorvastatin via BCRP and MDR1. However, metformin significantly inhibited the transport of atorvastatin and 2-hydroxyatorvastatin via MRP2 (apparent IC50 = 12 and 2 µM). Coadministered metformin significantly increased the Kp,liver and Cliver (1.7- and 1.6-fold) and decreased the biliary clearance of atorvastatin (2.7-fold) in SDR, but it did not affect the plasma concentration and total clearance of atorvastatin. Similar effects by metformin were observed for 2-hydroxyatorvastatin. In addition, coadministered metformin did not have any effect in EHBR. Therefore, coadministered metformin increases the liver concentration of atorvastatin via inhibition of the Mrp2 in rats, without affecting the plasma concentration. This "silent interaction" by metformin in atorvastatin and metformin combination therapy may be related to the unnoticeable pharmacological synergism or unpredicted side effects of atorvastatin in the liver.


Assuntos
Atorvastatina/metabolismo , Fígado/metabolismo , Metformina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Animais , Atorvastatina/administração & dosagem , Cães , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fígado/efeitos dos fármacos , Células Madin Darby de Rim Canino , Masculino , Metformina/administração & dosagem , Proteína 2 Associada à Farmacorresistência Múltipla , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...