Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134382, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703675

RESUMO

The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.

2.
ACS Omega ; 7(29): 25110-25121, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910151

RESUMO

One of the most widely used electric field sensors for low-frequency electric field detection (LFEFD) in seawater uses the Ag/AgCl electrode. The surface structure of the electrode including AgCl layers plays a critical role in the electrode's electrochemical performance required for the sensor. In this study, the sequential AgCl formation process under the constant current was examined on the Ag wire in an electrode size for actual applications, and an optimal electrode surface structure was suggested for the LFEFD Ag/AgCl sensor. Upon mild anodization (0.2 mA/cm2) in 3.3 M KCl solution that permits us to follow the AgCl formation process manageably, Ag dissolution from the wire surface begins leaving cavities on the surface, with the accompanied growth of initial Ag grains. During this period, AgCl deposits in sizes of about several micrometers to 10 µm with crystal planes also form primarily along scratch lines on the wire surface, but in a partial scale. Then, with further anodization, the assumed thin AgCl deposits start to form, covering a large portion of the wire surface. They grow to become deposits in sizes of about several micrometers to 10 µm with no clear facet planes next to one another and are connected to form the network structure, representing the main developing mode of the AgCl deposits. While they cover all the surface, AgCl deposits also form on the surface of the already formed ones, making multiple AgCl layers. All these deposits develop through the nucleation process with a relatively high surface energy barrier, and their formation rate is solely controlled by the release rate of Ag+ from the wire, thus by the applied current magnitude. The Ag/AgCl electrode with a thick AgCl layer and many holes in the AgCl surface structure like microchannels is considered to work effectively for the LFEFD sensor in terms of both detection sensitivity and service lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...