Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38696294

RESUMO

To evaluate sleep quality, it is necessary to monitor overnight sleep duration. However, sleep monitoring typically requires more than 7 hours, which can be inefficient in termxs of data size and analysis. Therefore, we proposed to develop a deep learning-based model using a 30 sec sleep electroencephalogram (EEG) early in the sleep cycle to predict sleep onset latency (SOL) distribution and explore associations with sleep quality (SQ). We propose a deep learning model composed of a structure that decomposes and restores the signal in epoch units and a structure that predicts the SOL distribution. We used the Sleep Heart Health Study public dataset, which includes a large number of study subjects, to estimate and evaluate the proposed model. The proposed model estimated the SOL distribution and divided it into four clusters. The advantage of the proposed model is that it shows the process of falling asleep for individual participants as a probability graph over time. Furthermore, we compared the baseline of good SQ and SOL and showed that less than 10 minutes SOL correlated better with good SQ. Moreover, it was the most suitable sleep feature that could be predicted using early EEG, compared with the total sleep time, sleep efficiency, and actual sleep time. Our study showed the feasibility of estimating SOL distribution using deep learning with an early EEG and showed that SOL distribution within 10 minutes was associated with good SQ.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Qualidade do Sono , Humanos , Masculino , Feminino , Adulto , Latência do Sono/fisiologia , Pessoa de Meia-Idade , Algoritmos , Idoso , Polissonografia , Sono/fisiologia
2.
IEEE J Biomed Health Inform ; 28(7): 4249-4259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598376

RESUMO

Sleep onset latency (SOL) is an important factor relating to the sleep quality of a subject. Therefore, accurate prediction of SOL is useful to identify individuals at risk of sleep disorders and to improve sleep quality. In this study, we estimate SOL distribution and falling asleep function using an electroencephalogram (EEG), which can measure the electric field of brain activity. We proposed a Multi Ensemble Distribution model for estimating Sleep Onset Latency (MEDi-SOL), consisting of a temporal encoder and a time distribution decoder. We evaluated the performance of the proposed model using a public dataset from the Sleep Heart Health Study. We considered four distributions, Normal, log-Normal, Weibull, and log-Logistic, and compared them with a survival model and a regression model. The temporal encoder with the ensemble log-Logistic and log-Normal distribution showed the best and second-best scores in the concordance index (C-index) and mean absolute error (MAE). Our MEDi-SOL, multi ensemble distribution with combining log-Logistic and log-Normal distribution, shows the best score in C-index and MAE, with a fast training time. Furthermore, our model can visualize the process of falling asleep for individual subjects. As a result, a distribution-based ensemble approach with appropriate distribution is more useful than point estimation.


Assuntos
Eletroencefalografia , Processamento de Sinais Assistido por Computador , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Latência do Sono/fisiologia , Pessoa de Meia-Idade , Adulto , Modelos Estatísticos , Algoritmos , Polissonografia/métodos , Idoso
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082845

RESUMO

Brain modulation is a modification process of brain activity through external stimulations. However, which condition can induce the activation is still unclear. Therefore, we aimed to identify brain activation conditions using 40 Hz monaural beat (MB). Under this stimulation, auditory sense status which is determined by frequency and power range is the condition to consider. Hence, we designed five sessions to compare; no stimulation, audible (AB), inaudible in frequency, inaudible in power, and inaudible in frequency and power. Ten healthy participants underwent each stimulation session for ten minutes with electroencephalogram (EEG) recording. For analysis, we calculated the power spectral density (PSD) of EEG for each session and compared them in frequency, time, and five brain regions. As a result, we observed the prominent power peak at 40 Hz in only AB. The induced EEG amplitude increase started at one minute and increased until the end of the session. These results of AB had significant differences in frontal, central, temporal, parietal, and occipital regions compared to other stimulations. From the statistical analysis, the PSD of the right temporal region was significantly higher than the left. We figure out the role that the auditory sense is important to lead brain activation. These findings help to understand the neurophysiological principle and effects of auditory stimulation.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Encéfalo/fisiologia , Audição , Estimulação Acústica/métodos , Mapeamento Encefálico
4.
Front Hum Neurosci ; 16: 898300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937679

RESUMO

The brain-computer interface (BCI) has been investigated as a form of communication tool between the brain and external devices. BCIs have been extended beyond communication and control over the years. The 2020 international BCI competition aimed to provide high-quality neuroscientific data for open access that could be used to evaluate the current degree of technical advances in BCI. Although there are a variety of remaining challenges for future BCI advances, we discuss some of more recent application directions: (i) few-shot EEG learning, (ii) micro-sleep detection (iii) imagined speech decoding, (iv) cross-session classification, and (v) EEG(+ear-EEG) detection in an ambulatory environment. Not only did scientists from the BCI field compete, but scholars with a broad variety of backgrounds and nationalities participated in the competition to address these challenges. Each dataset was prepared and separated into three data that were released to the competitors in the form of training and validation sets followed by a test set. Remarkable BCI advances were identified through the 2020 competition and indicated some trends of interest to BCI researchers.

5.
Sci Data ; 8(1): 315, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930915

RESUMO

We present a mobile dataset obtained from electroencephalography (EEG) of the scalp and around the ear as well as from locomotion sensors by 24 participants moving at four different speeds while performing two brain-computer interface (BCI) tasks. The data were collected from 32-channel scalp-EEG, 14-channel ear-EEG, 4-channel electrooculography, and 9-channel inertial measurement units placed at the forehead, left ankle, and right ankle. The recording conditions were as follows: standing, slow walking, fast walking, and slight running at speeds of 0, 0.8, 1.6, and 2.0 m/s, respectively. For each speed, two different BCI paradigms, event-related potential and steady-state visual evoked potential, were recorded. To evaluate the signal quality, scalp- and ear-EEG data were qualitatively and quantitatively validated during each speed. We believe that the dataset will facilitate BCIs in diverse mobile environments to analyze brain activities and evaluate the performance quantitatively for expanding the use of practical BCIs.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Potenciais Evocados , Corrida/fisiologia , Posição Ortostática , Caminhada/fisiologia , Adulto , Orelha , Eletroencefalografia , Feminino , Humanos , Masculino , Couro Cabeludo , Adulto Jovem
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2973-2976, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018630

RESUMO

Event-related potential (ERP) speller can be utilized in device control and communication for locked-in or severely injured patients. However, problems such as inter-subject performance instability and ERP-illiteracy are still unresolved. Therefore, it is necessary to predict classification performance before performing an ERP speller in order to use it efficiently. In this study, we investigated the correlations with ERP speller performance using a resting-state before an ERP speller. In specific, we used spectral power and functional connectivity according to four brain regions and five frequency bands. As a result, the delta power in the frontal region and functional connectivity in the delta, alpha, gamma bands are significantly correlated with the ERP speller performance. Also, we predicted the ERP speller performance using EEG features in the resting-state. These findings may contribute to investigating the ERP-illiteracy and considering the appropriate alternatives for each user.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Potenciais Evocados , Lobo Frontal , Humanos
7.
Front Hum Neurosci ; 13: 425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849629

RESUMO

Sleep is important to maintain physical and cognitive functions in everyday life. However, the prevalence of sleep disorders is on the rise. One existing solution to this problem is to induce sleep using an auditory stimulus. When we listen to acoustic beats of two tones in each ear simultaneously, a binaural beat is generated which induces brain signals at a specific desired frequency. However, this auditory stimulus is uncomfortable for users to listen to induce sleep. To overcome this difficulty, we can exploit the feelings of calmness and relaxation that are induced by the perceptual phenomenon of autonomous sensory meridian response (ASMR). In this study, we proposed a novel auditory stimulus for inducing sleep. Specifically, we used a 6 Hz binaural beat corresponding to the center of the theta band (4-8 Hz), which is the frequency at which brain activity is entrained during non-rapid eye movement (NREM) in sleep stage 1. In addition, the "ASMR triggers" that cause ASMR were presented from natural sound as the sensory stimuli. In session 1, we combined two auditory stimuli (the 6 Hz binaural beat and ASMR triggers) at three-decibel ratios to find the optimal combination ratio. As a result, we determined that the combination of a 30:60 dB ratio of binaural beat to ASMR trigger is most effective for inducing theta power and psychological stability. In session 2, the effects of these combined stimuli (CS) were compared with an only binaural beat, only the ASMR trigger, or a sham condition. The combination stimulus retained the advantages of the binaural beat and resolved its shortcomings with the ASMR triggers, including psychological self-reports. Our findings indicate that the proposed auditory stimulus could induce the brain signals required for sleep, while simultaneously keeping the user in a psychologically comfortable state. This technology provides an important opportunity to develop a novel method for increasing the quality of sleep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...