Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 57(1): 60-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38053293

RESUMO

The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].


Assuntos
Edição de Genes , Células-Tronco Mesenquimais , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , DNA , Células-Tronco Mesenquimais/metabolismo
2.
Mol Ther Nucleic Acids ; 31: 586-595, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36910714

RESUMO

Lesch-Nyhan syndrome (LNS) is inherited as an X-linked recessive genetic disorder caused by mutations in hypoxanthine-guanine phosphoribosyl transferase 1 (HPRT1). Patients with LNS show various clinical phenotypes, including hyperuricemia, gout, devastating behavioral abnormality, intellectual disability, and self-harm. Although uric acid overproduction can be modulated with the xanthine oxidase inhibitor allopurinol, there exists no treatment for behavioral and neurological manifestations of LNS. In the current study, CRISPR-mediated base editors (BEs) and prime editors (PEs) were utilized to generate LNS-associated disease models and correct the disease models for therapeutic approach. Cytosine BEs (CBEs) were used to induce c.430C>T and c.508C>T mutations in HAP1 cells, and then adenine BEs (ABEs) were used to correct these mutations without DNA cleavage. PEs induced a c.333_334ins(A) mutation, identified in a Korean patient with LNS, in HAP1 cells, which was corrected in turn by PEs. Furthermore, improved PEs corrected the same mutation in LNS patient-derived fibroblasts by up to 14% without any unwanted mutations. These results suggest that CRISPR-mediated BEs and PEs would be suggested as a potential therapeutic strategy of this extremely rare, devastating genetic disease.

3.
Exp Mol Med ; 55(2): 377-384, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36720917

RESUMO

Various CRISPR‒Cas9 orthologs are used in genome engineering. One of the smallest Cas9 orthologs is cjCas9 derived from Campylobacter jejuni, which is a highly specific genome editing tool. Here, we developed cjCas9-based base editors including a cytosine base editor (cjCBEmax) and an adenine base editor (cjABE8e) that can successfully induce endogenous base substitutions by up to 91.2% at the HPD gene in HEK293T cells. Analysis of the base editing efficiency of 13 endogenous target sites showed that the active windows of cjCBEmax and cjABE8e are wider than those of spCas9-based base editors and that their specificities are slightly lower than that of cjCas9. Importantly, engineered cjCas9 and gRNA scaffolds can improve the base editing efficiency of cjABE8e by up to 6.4-fold at the HIF1A gene in HEK293T cells. Due to its small size, cjABE8e can be packaged in a single adeno-associated virus vector with two tandem arrays of gRNAs, and the delivery of the resulting AAV could introduce base substitutions at endogenous ANGPT2 and HPD target sites. Overall, our findings have expanded the potential of the use of base editors for in vivo or ex vivo therapeutic approaches.


Assuntos
Campylobacter jejuni , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas
4.
Genes Genomics ; 45(2): 183-190, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36571712

RESUMO

BACKGROUND: Previous studies have reported many cases of Trichinella spiralis (T. spiralis) infection in normal skeletal muscle but there is little research on T. spiralis infection in abnormal muscle tissue. OBJECTIVE: To identify the effect of T. spiralis infection on muscular dystrophy, this study compared aspects of infection between normal (C57BL/10) and dystrophin-deficient Duchenne muscular dystrophy (DMD) mdx mice. METHOD: Infection rate was found to be lower in mdx mice than in C57BL/10 mice at early stages of infection; however, infection and inflammation in mdx mice persisted at later stages of infection while the infection rate and inflammation in C57BL/10 mice decreased gradually. The inflammation area was proportional to the degree of infection in both groups. Muscle strength was measured by the time of latency to fall in the wire-hanging test. Hanging time was shorter in the infected group than in the uninfected group in both C57BL/10 and mdx mice. RESULTS: Muscle strength was also reduced in mdx mice compared with C57BL/10 mice in both the un-infected and infected groups. The muscle intracellular cytokines TGF-ß and IL-6 were continuously expressed from early stage to late-stage infection. IL-10 was strongly expressed at the early stage of infection but decreased as the infection progressed. TNF-α expression remained stable from early to late-stage infection in mdx mice, while TNF-α was elevated only during early-stage infection in C57BL/10 mice. The degree of muscle damage was significantly higher in mdx mice than in C57BL/10 mice because of the high level of serum creatine kinase (CK). CONCLUSION: These results suggest that mdx mice continued in infection and inflammation until the late stages of disease, which was in contrast to the C57BL/10 mice that recovered to some extent in the late stage of infection. In addition, that dystrophin-deficient mice are not suitable for T. spiralis infection compared to normal mice, and the degree of inflammation may be worse in mdx mice.


Assuntos
Distrofina , Doenças Parasitárias , Animais , Camundongos , Distrofina/genética , Distrofina/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Doenças Parasitárias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Oncol ; 11: 631469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816268

RESUMO

TNF-α plays a crucial role in cancer initiation and progression by enhancing cancer cell proliferation, survival, and migration. Even though the known functional role of AWP1 (zinc finger AN1 type-6, ZFAND6) is as a key mediator of TNF-α signaling, its potential role in the TNF-α-dependent responses of cancer cells remains unclear. In our current study, we found that an AWP1 knockdown using short hairpin RNAs increases the migratory potential of non-aggressive MCF-7 breast cancer cells with no significant alteration of their proliferation in response to TNF-α. A CRISPR/Cas9-mediated AWP1 knockout in MCF-7 cells led to mesenchymal cell type morphological changes and an accelerated motility. TNF-α administration further increased this migratory capacity of these AWP1-depleted cells through the activation of NF-κB accompanied by increased epithelial-mesenchymal transition-related gene expression. In particular, an AWP1 depletion augmented the expression of Nox1, reactive oxygen species (ROS) generating enzymes, and ROS levels and subsequently promoted the migratory potential of MCF-7 cells mediated by TNF-α. These TNF-α-mediated increases in the chemotactic migration of AWP1 knockout cells were completely abrogated by an NF-κB inhibitor and a ROS scavenger. Our results suggest that a loss-of-function of AWP1 alters the TNF-α response of non-aggressive breast cancer cells by potentiating ROS-dependent NF-κB activation.

6.
J Vis Exp ; (168)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33720123

RESUMO

Recent studies have investigated the risks associated with BRCA1 gene mutations using various functional assessment methods such as fluorescent reporter assays, embryonic stem cell viability assays, and therapeutic drug-based sensitivity assays. Although they have clarified a lot of BRCA1 variants, these assays involving the use of exogenously expressed BRCA1 variants are associated with overexpression issues and cannot be applied to post-transcriptional regulation. To resolve these limitations, we previously reported a method for functional analysis of BRCA1 variants via CRISPR-mediated cytosine base editor that induce targeted nucleotide substitution in living cells. Using this method, we identified variants whose functions remain ambiguous, including c.-97C>T, c.154C>T, c.3847C>T, c.5056C>T, and c.4986+5G>A, and confirmed that CRISPR-mediated base editors are useful tools for reclassifying the variants of uncertain significance in BRCA1. Here, we describe a protocol for functional analysis of BRCA1 variants using CRISPR-based cytosine base editor. This protocol provides guidelines for the selection of target sites, functional analysis and evaluation of BRCA1 variants.


Assuntos
Proteína BRCA1/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Variação Genética , Sequência de Bases , Neoplasias da Mama/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Guia de Cinetoplastídeos/genética
7.
Nucleic Acids Res ; 49(4): 2390-2399, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544854

RESUMO

CRISPR-based base editors (BEs) are widely used to induce nucleotide substitutions in living cells and organisms without causing the damaging DNA double-strand breaks and DNA donor templates. Cytosine BEs that induce C:G to T:A conversion and adenine BEs that induce A:T to G:C conversion have been developed. Various attempts have been made to increase the efficiency of both BEs; however, their activities need to be improved for further applications. Here, we describe a fluorescent reporter-based drug screening platform to identify novel chemicals with the goal of improving adenine base editing efficiency. The reporter system revealed that histone deacetylase inhibitors, particularly romidepsin, enhanced base editing efficiencies by up to 4.9-fold by increasing the expression levels of proteins and target accessibility. The results support the use of romidepsin as a viable option to improve base editing efficiency in biomedical research and therapeutic genome engineering.


Assuntos
Adenina , Sistemas CRISPR-Cas , Edição de Genes , Inibidores de Histona Desacetilases/farmacologia , Depsipeptídeos/farmacologia , Doxiciclina/farmacologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , Substâncias Luminescentes/análise , Biossíntese de Proteínas , RNA/biossíntese
8.
Mol Ther ; 29(6): 2001-2007, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33636398

RESUMO

Although prime editors are a powerful tool for genome editing, which can generate various types of mutations such as nucleotide substitutions, insertions, and deletions in the genome without double-strand breaks or donor DNA, the conventional prime editors are still limited to their target scopes because of the PAM preference of the Streptococcus pyogenes Cas9 (spCas9) protein. Here, we describe the engineered prime editors to expand the range of their target sites using various PAM-flexible Cas9 variants. Using the engineered prime editors, we could successfully generate more than 50 types of mutations with up to 51.7% prime-editing activity in HEK293T cells. In addition, we successfully introduced the BRAF V600E mutation, which could not be induced by conventional prime editors. These variants of prime editors will broaden the applicability of CRISPR-based prime editing technologies in biological research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Engenharia Genética , Motivos de Nucleotídeos , Alelos , Substituição de Aminoácidos , Sítios de Ligação , Proteína 9 Associada à CRISPR , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Engenharia Genética/métodos , Células HEK293 , Humanos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética
9.
Methods Mol Biol ; 2162: 185-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926383

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) protein has emerged as a genome engineering tool for various organisms. Known as the CRISPR-Cas system, Cas endonucleases such as Cas9 and Cas12a (also known as Cpf1) and guide RNA (gRNA) complexes recognize and cleave the target DNA, allowing for targeted gene manipulation. Along with the Cas protein engineering, gRNA engineering has broadened the applications of the CRISPR-Cas system. Recently, we have developed fusion guide RNAs (fgRNAs) for orthogonal gene manipulation using Cas9 and Cas12a. Here, we describe the methods for designing and generating fgRNAs-expression constructs to achieve multiplex genome editing and gene manipulation in human cells.


Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Endodesoxirribonucleases/genética , Edição de Genes/métodos , Engenharia de Proteínas/métodos , Sistemas CRISPR-Cas/genética , Humanos , RNA Guia de Cinetoplastídeos/genética
10.
Oncogene ; 39(1): 30-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31467430

RESUMO

Genetic mutations in BRCA1, which is crucial for the process of DNA repair and maintenance of genomic integrity, are known to increase markedly the risk of breast and ovarian cancers. Clinical genetic testing has been used to identify new BRCA1 variants; however, functional assessment and determination of their pathogenicity still poses challenges for clinical management. Here, we describe that CRISPR-mediated cytosine base editor, known as BE3, can be used for the functional analysis of BRCA1 variants. We performed CRISPR-mediated base-editing screening using 745 gRNAs targeting all exons in BRCA1 to identify loss-of-function variants and identified variants whose function has heretofore remained unknown, such as c.-97C>T, c.154C>T, c.3847C>T, c.5056C>T, and c.4986+5G>A. Our results show that CRISPR-mediated base editor is a powerful tool for the reclassification of variants of uncertain significance (VUSs) in BRCA1.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Sistemas CRISPR-Cas/genética , Neoplasias Ovarianas/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citosina/química , Reparo do DNA/genética , Éxons/genética , Feminino , Edição de Genes , Testes Genéticos , Instabilidade Genômica/genética , Ensaios de Triagem em Larga Escala , Humanos , Mutação com Perda de Função/genética , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...