Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899888

RESUMO

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Assuntos
Insuficiência Cardíaca , Receptores de Progesterona , Humanos , Trifosfato de Adenosina/uso terapêutico , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana , Miócitos Cardíacos/metabolismo , Ácido Pirúvico
2.
Exp Anim ; 71(1): 109-115, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34707028

RESUMO

We surveyed mouse microbiological contamination rates by testing rates for common contaminants using serological, culture, and parasitological methods. A total of 21,292 experimentally housed mice from 206 animal facilities, including hospitals, universities, companies, and research institutes, were tested over a 6-year period from 2014 to 2019. The most commonly found contaminants were various species of nonpathogenic protozoa (47.2%). The most common pathogenic bacteria were Staphylococcus aureus (21.2%), Pasteurella pneumotropica (12.5%), and Pseudomonas aeruginosa (5.8%). Mouse hepatitis virus (6.1%) was detected, but no other viral or bacterial pathogens were found. These results establish that the main pathogens that currently contaminate mouse facilities in Korea are opportunistic pathogens and that contamination with important pathogens, such as those in Categories B or C, has decreased.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bactérias , Camundongos , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...